Education and Information Technologies 3 277-290 (1998)

A design for a hypermedia-based learning
environment

0SSI NYKANEN

Tampere University of Technology, Digital Media Institute, Hypermedia Laboratory,
P.O. Box 692, FIN-33101 Tampere, Finland.

E-mail: ossi.nykanen@.cc.tut.fi

MARTTI ALA-RANTALA

Tampere University of Technology, Digital Media Institute, Hypermedia Laboratory,
P.O. Box 692, FIN-33101 Tampere, Finland.

E-mail: martti.ala-rantala@iki.fi

This paper presents ideas and a design for a Hypermedia-Based Learning Environ-
ment, HBLE for short. As the system is in implementation phase, we are also able
to present some implementation techniques, problems and solutions.

HBLE offers tools and methods for course development, teaching, maintenance,
and different learner-centered study strategies. The system also has information
acquisition functionality for research purposes.

We study structuring the learning material and how to adapt it for individual stu-
dents. As collaboration is an important aspect of learning process, the system also
includes tools and research instruments for collaborative activities between the
actors in the learning process. The concrete outcomes of the project are a plat-
form for Web-based courses and experimental courseware. © 1998 IFIP, published by
Kluwer Academic Publishers

KEYWORDS: distance learning; design technology; Internet; open learning.

INTRODUCTION

There is an increasing interest in creating WWW-based learning tools and learning
environments. Such tools use the general methodology and techniques that have
resulted from the work of computer-based education and artificial intelligence
pioneers in the overlapping fields of computer aided instruction (CAI), intelligent
tutoring (IT) and adaptive hypermedia (AH). Although the WWW has made the
production and deployment of distributed learning material easy, producing high-
quality learning material requires more advanced tools than simple HTML editors.

1360-2357 © 1998 IFIP, published by Kluwer Academic Publishers

278 Nykéanen and Ala-Rantala

Learning environments should provide students with tools and methods for motiva-
tion and effective self-studying. This means applying student adaptive techniques
and a ‘learning by doing’ ideology when creating learning environments. Learning
environment should also provide feedback and feelings of success.

Information presentation, user adaptation and collaboration are the fundamental
sectors of learning environments, and an ideal system should combine all three.
The task of creating educational hypermedia is far from trivial since it involves cou-
pling a number of different types of theories and techniques such as goal-oriented
teaching, hypermedia management and student modeling.

A major problem of realizing all this is actually designing and implementing such a
large-scale system in practice. This is where software designers come in, since the
process of designing and constructing open learning environments can benefit from
lessons learned, e.g., from object-oriented software design.

A common pitfall in creating educational systems has been using the latest technol-
ogy for its own sake as a starting point of the design. This has lead to building proto-
types with little long-term use. We try to overcome this problem by co-operating
with pedagogical experts, students and teachers.

This paper presents ideas and a design for a Hypermedia-Based Learning Environ-
ment (HBLE) designed primarily for teaching university level mathematics. HBLE
will offer tools for authoring learning material, teaching, studying, and performing
research within the learning environment. The main contribution of the final system
will be combining the most important social and educational, as well as the crucial
technical and material aspects of the learning and teaching processes to a reason-
able extent using modern technologies and pedagogical theories. In essence, this
integration includes coupling educational content, mechanisms of adaptive hyper-
media and distance teaching and learning methods in a technically and pedagogi-
cally correct way.

This paper provides a snapshot of the system being studied and constructed at the
Hypermedia Laboratory of TUT in its current state. The main objective of this paper
is to capture important methodological and technical viewpoints, problems and
solutions in relation to this ongoing work.

Pedagogical aspects of the system are explained, e.g., in (Ruokamo-Saari and Pohjo-
lainen, 1997). We are also using and revising ideas resulting from previous work at
TUT in the field of hypermedia-based educational systems, see (TUT, 1995) and
(TUT, 1996).

FUNDAMENTALS OF HBLE

HBLE couples different types of educational hypermedia disciplines and techniques.
These include structuring course content, communication, collaboration, and re-
cognition of different types of user groups.

A design for a hypermedia-based learning environment 279

Organization of courses

Courses form the material backbone of educational content in open learning envir-
onments. Since HBLE relies on adaptive hypermedia, courses have both static and
dynamic content that may appear differently to different users and include, e.g.,
time and user-specific information. To achieve this with practical authoring meth-
ods, we introduce three different types of courses in the system: abstract courses,
concrete courses and user instances of courses, see Fig. 1.

Abstract courses consist of user-independent presentation of the structure and
hypermedia content of some specific course. The hypermedia content of abstract
course material is internally presented in the form of a directed acyclic graph that
we call a knowledge graph. In its construction, a knowledge graph is essentially a
special kind of weighted directed graph. However a knowledge graph has certain
constraints; parallel arcs not allowed, extra arcs in paths between cells are reduced,
etc. Arcs and cells have also various kinds of attributes, e.g., for student data, identi-
fiers, labels and visual properties.

Figure 1 presents an example of a simple knowledge graph with information asso-
ciated with an abstract course, a concrete course based on that, and information
specific to one student instance of the course. Each cell of the knowledge graph of a
abstract course is presented as a small hypermedia document. Arcs in the graph
define the prerequisite relations between the cells. For instance, in the previous
example the student must understand the concepts set and scalar to understand
vector. An approach using relatively small, linked knowledge elements has many
advantages. First, it makes it possible to effectively define specific goals for study-
ing. Second, each student’s knowledge of each topic can be estimated separately,
enabling automated navigation guidance, and third, the hierarchical structure of
information is stated explicitly.

In addition to prerequisite relations between cells, static and interactive contents,
the structure of a abstract course includes also the initial design of, e.g., links to

/Q cell] \

abstract course
information

scalar —> (prerequisite) relation

vector m association to
@ matrix external dynamic
(@D information manager

@ dynamic concrete concrete course
course material information

user-specific data user instance
K _| information /

Figure I. Hierarchical course structure

280 Nykéanen and Ala-Rantala

bulletin boards, dynamic data structures and acquisition mechanisms and access
to course-specific tools. Abstract courses can be considered templates for concrete
courses. Concrete courses are active courses being taught and studied and are based
on materials and structures of a specific abstract course. In addition, a concrete
course includes timetables, bulletin boards, user and workgroup information. One
abstract course can act as an template for any number of concrete courses. Con-
crete courses exist in various forms; some progress in parallel to conventional lec-
tures while others live independently on the Web.

A user instance of a course is a user-specific image of a concrete course. For stu-
dents, for example, it includes the student’s progress measurement data, personal
annotations and resources and statistics. User instances of a course apply and pro-
vide various adaptive methods and tools specific to users and to various user
groups in general. The content and linking of actual hypermedia documents may
vary based on co-operative user modeling.

Using abstract courses as templates for concrete courses and user instances pro-
vides a practical mechanism for dynamically developing and updating courses.
Since one abstract course possibly provides static content and structure for num-
ber of concrete courses, changes in one abstract course are reflected in all asso-
ciated concrete courses. On the other hand, redesigning just one concrete course is
merely a matter of duplicating and modifying the abstract course and creating a
new concrete course based on this updated copy.

Course material

The material of each course consists of a set of cells that can be visualized as asso-
ciated hypermedia documents. Each cell introduces a single topic or a virtual sec-
tion. Each topic consists one simple issue, for instance, a definition or a theorem.
Virtual sections present no new information in the system but define logical groups
of topics instead. They bind the relevant topics together in a meaningful fashion
providing overview of the topics discussed with introduction, general background,
examples, exercises and tests. Virtual sections may be combined hierarchically into
larger entities.

Hypermedia documents consist of different kinds of hierarchical elements. These in-
clude theory, exercises, theoretical and practical examples as well as tests divided
into difficulty levels by the author. Material is composed of combinations of text,
graphics, simulations, audio, video, interfaces to mathematical software and other
media types.

Documents are stored along with abstract courses in a general presentation form.
User-specific document instances are created on demand by the HBLE server.
Students receive documents adjusted to their skills while teachers and designers
receive more information based on their individual classification and needs. Cur-
rently material development is based heavily on teaching mathematics, but in the
future the scope of our approach may be extended into other disciplines as well.

A design for a hypermedia-based learning environment 281

The hierarchical organization of hypermedia documents using topics and virtual
sections provides students with a familiar and motivating granularity similar to con-
ventional books. HBLE also provides for users a visual and non-linear navigation
tools, intelligent navigation aids and search mechanisms. In addition to embedded
hypermedia elements, extended course material includes a varying set of user cate-
gory -specific tools including annotation and text editors, authoring tools, simple
worksheet tools for teachers and course-specific student tools to be used, e.g., par-
allel to demonstrations and exercises. These features and session-based functional-
ity provide users with convenient methods for working effectively with the system.

Authoring courses is based on a three-step procedure of producing course material:
designing structures for courses, generating content, the necessary hypermedia
materials and interactive components, and combining these using a special author-
ing toolkit. The toolkit includes a tailored programmable macro language suitable
for writing structural hypermedia and provides mechanisms such as automatic link-
ing and content indexing. The same source material can be readily converted into
various visual and functional forms.

After creating an abstract course, establishing a concrete course requires duplicat-
ing the structure of the abstract course and adding relevant dynamic information to
it. Then users can be assigned to the concrete course and the course can be
started.

Collaboration and communication

Collaborative activities, that is, working in a group and communicating with the tea-
cher, are essential for the learning process. There are several forms of collaboration
and communication supported by HBLE. The student may ask the teacher questions
about the course. Each concrete course has a discussion forum associated with
it. The forum is organized like the customary bulletin boards or news systems.
Further, students and teachers may send comments about the course material to
the author.

Social learning is supported by workgroup activities. Each working group is
assigned a discussion forum and workspace with collaborative tools. Groups can
assess their own work and present it publicly.

One method of assessing the student’s comprehension of a topic is to have the stu-
dent answer questions in essay format. The answers are graded by a human teacher
and used as a basis for progress measurement just like other assessment methods.

User categories

HBLE has three main user categories: visitors, students and staff. Staff includes
authors, teachers, administrators and researchers.

A visitor is just like a student flipping through the pages of a textbook in a book-

282 Nykéanen and Ala-Rantala

store. This category is essentially for demonstration purposes, since visitors do not
participate in a concrete course in any way. The usage of the system is limited: the
learning results are not stored, and the use of supplementing software, e.g., course-
specific tools using Maple, may be limited. The collaborative functions are mainly
disabled.

A student is registered at the university. When he/she enrols in a course through
HBLE, notification is sent to the university’s course enrolment system. The student
takes the class according to the standard university procedure and has the right to
use the aspects of HBLE that require teacher contribution. Basically, students use
HBLE as one form of course material.

Authors produce the course content and are responsible for the FAQ lists. They
create topics and relations between them, and group the topics into virtual sections.

Teachers make use of the system as teaching material. There is at least one teacher
assigned to each course. The teacher follows the progress of students, answers the
questions posed by the students and participates the discussion about the course.
The teacher also grades the answers to essay problems.

Researchers use the system for information acquisition purposes. The system col-
lects statistics about the paths students take through the material, the usage of
various features of the system, the frequencies of visits to individual topics etc.
Researchers can extract reports from this data.

The administrator manages the HBLE system, for example, adds users and cleans
up after a course is through. This is a super-user role that requires strict security
measures.

STUDENT MODELING

Since our aim is to design and create an adaptive learning environment with elemen-
tary tutoring capabilities, the need for a student model is obvious. Our approach
suggests hypermedia cell structure as a natural starting point for student modeling,
which quite naturally leads into using overlay modeling techniques.

Description of the model

The abstract course defines a knowledge graph that can be used as a basis of stu-
dent modelling. The basic version of the knowledge graph consists only of cells and
prerequisite relations between them, see Fig. 1. The idea of the prerequisite relation
is simple. Cell A is said to be prerequisite to cell B if there exists a path from A to B.
In other words, the prerequisite version of the knowledge graph indicates what
topics should be known before studying the topic at hand. Arcs of the graph may be
weighted to compensate for the differences in the amount of information presented
in individual topics. Other types of semantic relations may be introduced later when
experience is gained in using the system.

A design for a hypermedia-based learning environment 283

Based on student-specific evaluation (for instance, completing exercises and vot-
ing), each cell is assigned a topic knowledge value, a scalar representing the stu-
dent’s measured knowledge of the topic. In effect, cells can be regarded as the
smallest knowledge items identified by the student model.

The student model associated with prerequisite semantics of the knowledge graph
makes automated evaluation, student-specific guidance and analysis of goal-
oriented studying possible. The knowledge graph stored in the student’s instance of
the course is equipped with a comprehension measure. Comprehension measure is a
scalar-valued function based on the course’s knowledge graph and knowledge
values assigned to the cells of the student’s instance of the course.

The comprehension measure allows analysis of the state of a user’s contextual
knowledge locally or in relation to large entities. With the comprehension measure
HBLE is able, e.g., to pinpoint a student’s strong and weak areas of knowledge and
thereby help the student to focus his or her efforts on related areas. This can also
be used as a basis for automatic learning strategy planning, for example by offering
the student a selection of alternative strategies for basic skills improvement or
target-oriented studying.

Updating the model

Since the validity of the student model is based on the accuracy of the topic know-
ledge measurements, updating these is critical. In most human-computer inter-
action the communication channel is very narrow; computer systems are incapable
of effectively using natural languages, they lack the ability to understand nonverbal
messages, and so on. This indicates that in order to gain relevant information from
the user an exact frame of interaction has to be employed.

In our case updating the student model is based on combining information acquisi-
tion using a voting mechanism and controlled exercises defined by the student mod-
el interface. The student model interface is a special kind of application interface
that specifies how different types of interactive exercises are added to the system.
The student model interface defines exactly how and when the student model is
updated. This makes it possible to add new interactive modules and new features to
the interaction between a student and the student model.

Interaction modules are, for instance, adaptive applications specializing in running
different types of controlled exercises. The modularity ensures that the interaction
modules can be used with a variety of content domains without rewriting any of
HBLE key components.

The development of the student model is non-monotonic. A student’s knowledge
state is changed according to the correctness of the student’s decisions and exer-
cise answers. Correct answers increase the estimate of the student’s knowledge
state accordingf the student’s decisions and exercise answers. Correct answers in-
crease the estimate of the student’s knowledge state according to the difficulty of

284 Nykéanen and Ala-Rantala

the exercises, while poorly solved exercises, clearly below the student’s abilities,
decrease it.

SYSTEM ARCHITECTURE AND IMPLEMENTATION

The governing design goal is to create a layered, loosely coupled and distributed
object-oriented framework that is easily extensible and modifiable. We expect HBLE
to remain in use for several years to come as a vehicle for study and research. Dur-
ing this time, the system needs to be maintained like any software system. A well
thought-out architecture is vital to this end.

The HBLE runtime system has two main components: the client running in the Web
browser and the server running in a Unix workstation. In addition to these, HBLE
includes authoring (described briefly in 2.2) and administration tools.

We distinguish, quite conventionally, two levels of architecture: system and applica-
tion. The system architecture is a three-tier distributed object system, see Fig. 2.
The application architecture on the client side is based on MVC++ (Jaaksi, 1995), a
modified version of the Model-View-Controller architecture that originates from the
venerable Smalltalk programming environment. Also the physical structure of the
system is of relevance.

Client Web Server

—
f—

University
/ Registration

-— -

Distributed Domain Object Model

—
Student S—

Model > User
Database

GUI

A

Learning P—
Material .

»| Student

I Database
—
—

< > Course
Administration Material D B

-

—
f—

Course
Database
A

A
\

A
y

Client:
Web Browser, Maple Engine
Java 1.1 Applets, Distribution:

Frames RMI (HTTP) Server: s
Oracle, Maple, |

Java Applications

Figure 2. HBLE system architecture

A design for a hypermedia-based learning environment 285

Physical architecture

The server comprises a gatekeeper process plus a set of session server processes.
The gatekeeper listens to incoming login requests. After authentication it creates a
user session and spawns a server process associated with that session. The client is
based on a Java-enabled Web browser. Client Manager, an applet that lives for the
entire duration of the session, controls user interaction and communicates with the
session server process.

Both client and server are implemented in Java using JDK (Java Development Kit)
1.1. This gives us a clean and uniform environment: the same object model and the
same language are used throughout the system. On the other hand, using Java may
induce performance penalties.

System architecture

At the core of the design is the Distributed Domain Object Model (DDOM) that cap-
tures the domain entities and their behavior. Examples of such entities in HBLE are
user, student model, course, topic and knowledge graph. For instance, a user object
is capable of loading its data from and storing it to permanent storage. In the case
of a student user, the object also has operations like retrieving the list of courses
the student is enrolled in. Below, we shall briefly discuss some of the various types
of classes that designing a DDOM produces.

Distributed classes look like regular (Java) classes to the client, but implement their
functionality on the server side. Proxy classes are distributed classes whose imple-
mentation is split between client and server sides. To create a distributed object
system, a set of common problems must be solved. Standard solutions exist, and
we have chosen to use RMI (Remote Method Invocation), a package that is a part of
JDK 1.1.

An instance of a persistent class may outlive the process that created it. Hence, such
an instance must be able to save and load its internal state so that we can store the
object and later restore it, perhaps in another process space. We use an Oracle
database and a set of flat files for permanent object storage. HBLE accesses the
database by way of JDBC (Java Database Connectivity) interfaces provided with
JDK 1.1 and Oracle JDBC drivers.

The same database engine we use in HBLE also runs the information system of our
university. HBLE connects to this system, e.g., to verify that a student wishing to
use the system is enrolled at the university.

Application architecture

According to MVC++, the application is arranged in three layers, each of which has
a well-defined set of duties, see Fig. 3. HBLE offers application designers a frame-

286 Nykéanen and Ala-Rantala

Actions of
the end user_ | GUI Request| rajns Request | workhorse
— | Knows how to 7~ Knows how this Domain expert.
User accept action application works. Performs domain
requests from Fulfills requests by operations on
and present commanding the request from the
results to the Model to do the Controller and
;ieedr?g%ksg end user work and displays returns results to it.
< results by
Results | commanding the Results
view.
| x|
View Controller Model

Figure 3. The workings of MVC++

work that hides the details of underlying environment, such as the Web browser
and the distribution mechanism.

In MVC++, there is always an application object that creates and governs the Model-
View-Controller triad. In HBLE, Client Manager acts as the MVC++ application
object.

Figure 4 illustrates the logical structure of HBLE GUI or the View. On top, the main
window has a command bar frame that displays the commands that are presently
active. The content window frame is in one of two modes: single or split. Typically,
in the split mode the secondary window would contain navigational information
whereas the content window would display the actual material under study. Float-
ing windows are used, for instance, for course-specific tools.

The Model part consists of an object hierarchy that contains both local and distribu-

Floating \/\

windows | @+ b2
a? + 2ab + b?
Section 1 LI yA yA
topic 1.1 Client Manager |
I I
topic 1.2 ﬁ
Section 2
Content Window
(Primary Window)

Figure 4. Logical GUI structure

A design for a hypermedia-based learning environment 287

ted objects. The Controller receives events from the user via View, from other applets
as well as from the Model. In response to these events, the Controller changes its
state and performs appropriate actions by commanding the View and the Model.

Implementation problems

Our implementation language, Java, has the reputation of being a clean, logical and
rather pure OO language. This may well be true for Java alone, but the Web browser
environment brings about some additional complications. This makes implementing
the architecture described quite challenging.

From the implementation point of view the outcome of this research project is two-
fold. We will test the feasibility of building the architecture previously described in
Web/Java environments in general, and particularly its suitability for creating Web-
based learning material. The implementation is currently in too early stage to give
answers to these questions.

RELATED WORK

Creating educational hypermedia and related software involves the coupling of dif-
ferent types of theories and technologies. Information presentation, user adaptation
and collaboration are the fundamental sectors of learning environments and an
ideal system should combine all of them. Today most systems work effectively
in one of these areas. A brief view of the field indicates that the WWW has become a
rather popular test field for running stand-alone curricula. Sites fall typically in the
following categories; Web-based curricula and non-interactive static courses, indivi-
dual tutorials and interactive exercises and educational ftp-like resources. Some
sites, such as The World Lecture Hall (ACITS, 1998), and Mathematics Archives WWW
Server (MATHARC, 1997), gather links to various WWW course resources providing
a good starting point for the casual browser.

Most sites available on the WWW present the subject matter in a book-like fashion
sometimes incorporating some tutoring capabilities. Sites such as ELM-ART,
(ELMART, 1997), Mathmania (UVIC, 1996), and Interactive Real Analysis (Wach-
smuth, B. G., 1996), present straightforward learning material in an interesting fash-
ion but offer little or no interaction. In addition to individually crafted courses,
there are also few large-scale development environments for creating and running
Web-based courses. A good example of such an environment is WebCT (WEBCT,
1998), a system for creating, authoring and teaching Web courses.

Most of the individual exercises on the Web are based on the intuitive use of HTML
forms or Java applets. The main problem with these is that with few exceptions,
most of them are created from scratch with little systematic planning. Lists of exer-
cises can be found, e.g., from the site Mathematics Archive: JAVA and Other Interac-
tive WWW Pages (INT, 1998). Another type of educational resource is, for instance,
Mathematica or Maple resource packages consisting software-specific features.

288 Nykéanen and Ala-Rantala

All research related to the area of educational hypermedia is not published as HTML
or distributed through URL addresses. From our point of view the most interesting
conventional publications deal with formalizing human-computer interaction and
structuring information. Publications are not discussed here in detail; relevant refer-
ences are listed in the end of this document.

One interesting field study of exploratory learning strategies in an average office en-
vironment conducted by Rieman (Rieman, 1996), however, is worth mentioning. Rie-
man studied the learning strategies of 14 informants with different backgrounds
using applications like word processors, programming tools, email and database
programs. Rieman found evidence that task-driven and ‘just-in-time’ approaches are
the main strategies when learning under time pressures. This is what most research-
ers would have expected. The rather striking overall finding was, however, that
on-line help systems were inferior to more conventional manuals. The fact that
informants preferred paper manuals implies that on-line help systems need revising.
This, on the other hand, suggests how the development of goal-oriented learning en-
vironments should evolve. Implications are clear: User-Centered Design (UCD)
should play a major role in designing educational hypermedia.

DISCUSSION

In this article we have presented ideas and a design for a hypermedia-based learning
environment. At present, the system is in the design and implementation phase.
Our approach combines the WWW, a method for learning material structuring,
adaptivity based on student modeling, and modern object-oriented software engi-
neering methods.

After the first functional version is up and running, it will be used for conducting
both pedagogical and technical experiments. The data gathered by HBLE during
these experiments will be analyzed to produce three main types of output: informa-
tion about learning and teaching, information about using open learning environ-
ments in general, and finally technical information about HBLE itself that will aid
further development of the system.

ACKNOWLEDGEMENTS

The research is supported by the Academy of Finland, the Finnish Ministry of Edu-
cation and Tampere University of Technology. Special thanks to our colleagues for
their helpful comments.

REFERENCES

ACITS (1998) The World Lecture Hall. A collection of worldwide links to educational material,
University of Texas at Austin. Referenced March 25, 1998. <http://www.utexas.edu/
world/lecture/index.html>

A design for a hypermedia-based learning environment 289

Brusilovsky, P. (1996) Methods and Techniques of Adaptive Hypermedia. User Modelling and
User-Adapted Interaction, 6, 87-129.

Carbonaro, A., Maniezzo, V., Roccetti, M. and Salomoni, P. (1996) Modeling the Student in Pita-
gora 2.0. User Modelling and User-Adapted Interaction, 4, 233-51.

Cockburn, A. and Jones, S. (1996) Which way now? Analysing and easing inadequacies in
WWW navigation. Human-Computer Studies, 45, 105-29.

Dillon, A. and Watson, C. (1996) User analysis in HCI — the historical lessons from individual
differences research. Human-Computer Studies, 45, 619-37.

ELMART (1997) ELM-ART: Episodic Learner Model — The Adaptive Remote Tutor. A course on
Lisp programming in English and German, University of Trier, Germany. <http://www.
psychologie.uni-trier.de:8000/elmart>

Hohl, H., Bécker, H-D. and Gunzenhéauser, R. (1996) Hypadapter: An Adaptive Hypertext Sys-
tem for Exploratory Learning and Programming. User Modeling and User-Adapted Inter-
action, 6, 131-56.

INT (1998) Mathematics Archive: JAVA and Other Interactive WWW Pages. A collection of inter-
active pages with mathematics-related content, University of Tennessee, Knoxville. Refer-
ences March 25, 1998. http://archives.math.utk.edu/cgi-bin/interactive.html>

Jaaksi, A. (1995) Implementing Interactive Applications in C++. Software Practice & Experi-
ence, Vol 25, No. 3, March 1995, pp. 271-89.

Kaplan, G., Fenwick, J. and Chen, J. (1993) Adaptive Hypertext Navigation Based On User
Goals and Context. User Modeling and User-Adapted Interaction 3, 193-220.

Lee, K., Lee, Y. and Berra, P. (1997) Management of Multi-structured Hypermedia Documents:
A Data Model, Query Language, and Indexing Scheme. Multimedia Tools and Applications,
4,199-223.

Lucarella, D. and Zanzi, A. (1996) A Visual Retrieval Environment for Hypermedia Information
Systems. ACM Transactions on Information Systems, 14(1), 3-29.

MATHARC (1997) Mathematics Archives WWW Server. A selection of Internet mathematical
resources, University of Tennessee, Knoxville. Referenced March 25, 1998. <http://
archives.math.utk.edu/>

Norman, D. and Spohrer, J. (1996) Learner-Centered Education. Communications of the ACM,
39(4), 24-27.

Pinson, L. J. and Wiener, R. S. (1988) An Introduction to Object-Oriented Programming and Small-
talk. Addison-Wesley, Reading, MA.

Pohjolainen, S., Multisilta, J. and Antchev, K. (1996) Matrix algebra with hypermedia. Educa-
tion and Information Technologies, 1, 123-141.

Powell, D. (1996) Group Communication. Communications of the ACM, 39(4), 50-53.

Ragnemalm, E. L. (1996) Student Diagnosis in Practice; Bridging a Gap. User Modeling and
User-Adapted Interaction, 5, 93-116.

Rieman, J. (1996) A Field Study of Exploratory Learning Strategies. ACM Transactions on Com-
puter-Human Interaction, 3(3), 189-218.

Ruokamo-Saari, H. and Pohjolainen, S. (1997) Pedagogical Issues for the Design of a Hyperme-
dia-Based Learning Environment. In Proceedings of the IFIP WG 3.3 Working Conference.
Edited by Darina Dicheva and Ivan Stanchev. Sozopol, Bulgary, May. pp. 82-91.

Soloway, E. and Pryor, A. (1996) The Next Generation in Human-Computer Interaction. Com-
munications of the ACM, 39(4), 16-18.

TUT (1995) Matriisilaskenta I (Matrix Algebra I). A Web course in Finnish, Tampere University
of Technology. Referenced March 25, 1998. <http://matwww.ee.tut.fi/matriisi/toc73109.
html>

TUT (1996) Johdatus Korkeakoulumatematiikkaan (Introduction to University Mathematics). A
Web course in Finnish, Tampere University of Technology. Referenced March 25, 1998.
<http://matwww.ee.tut.fi/jkkm/toc.html>

290 Nykéanen and Ala-Rantala

UVIC (1996) MATHMANIA. A Web course on advanced mathematical topics, University of Vic-
toria, Canada. N.B. currently down. Referenced March 25, 1998. <http://csr.uvic.ca/
~mmania/>

Wachsmuth, B. G. (1996) Interactive Real Analysis. A Web course, Seton Hall University. Refer-
enced March 25, 1998. <http://www.shu.edu/projects/reals/reals.html>

WEBCT (1998) WebCT. A Web course authoring tool, University of British Columbia. Refer-
enced March 25, 1998. <http://homebrew.cs.ubc.ca/webct/>

