
0018-9162/05/$20.00 © 2005 IEEE June 2005 57

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Architecting Multimedia
Environments for
Teaching

A lthough surrounded by today’s many
technological enhancements, teachers
remain utterly alone in front of their
classes. Even in 2005, most teachers still
rely on well-established primitive aids.

For example, the chalkboard—one of history’s ear-
liest teaching tools—remains the preferred exposi-
tion medium in many scientific disciplines. Since
the advent of computational devices in education,
researchers have sought the means for properly
integrating them and taking advantage of their
capabilities.

The difficult task of architecting multimedia envi-
ronments for teaching must start with a needs
analysis. The most challenging task involves war-
ranting reliability on the one hand, while accom-
modating opportunities for innovation on the other.

Thus, we propose building a reliable, ubiquitous,
adaptable, and easy-to-use technology-integrating
black box. Placing this system atop a service-ori-
ented component model implemented on a plat-
form-independent layer such as a virtual machine
will provide the adaptability developers need.
Loosely coupled components will accommodate a
nonmonolithic approach and ease reuse. By reusing
and enhancing components, the system will become
increasingly reliable, while a building-block archi-
tecture will keep it manageable.

WHAT TEACHERS HAVE
The demand for computational equipment to use

in education is surging. Several partial solutions

already exist, but no one so far has put forth a
global vision for using this technology. Nor have
researchers devoted much effort to developing
architectures that can combine technologies focused
on the classroom with easily used designs.

To date, three e-learning approaches predomi-
nate:

• intensive use of slide show presentations;
• video recording lectures transmitted via fiber

optics and, more recently, Internet broadcast-
ing; and

• the creation of e-learning modules such as
dynamic Web pages, flash animations, or Java
applets.

Slide show presentations enable good visualiza-
tion and smooth lecture performance. The instruc-
tor plans the presentation’s structure up front, taking
into account all required resources. Visual elements
such as tables, diagrams, or images can be directly
presented to the audience. Further, computer-gen-
erated slides can be printed out so that students don’t
need to copy the content for later review.

However, slide show presentations often appear
static because everything must be planned in
advance, leaving few possibilities for the teacher to
adapt the content in interaction with the students.

Usually, slides present content in note form, struc-
tured as bullet-point lists, which dramatically
restricts the lecturer’s freedom of expression. Often,
the instructor must deliver information out-of-band

Thus far, developers have created only partial solutions for using
computational equipment in education. Research must focus more
effort on developing architectures capable of combining technologies
that target the classroom and that allow specifying “what” rather than
“how” tasks should be done.

Gerald
Friedland
Karl Pauls
Freie Universität
Berlin

58 Computer

and unencapsulated in the slides because
drawing diagrams by hand is easier and more
intuitive and doing so does not require hours
of preparation.

Students sometimes feel overwhelmed
when a huge number of slides are displayed
in rapid succession. Especially in math and
physics, the journey is the reward, so students
need to focus not on the results presented in
the slides but on the development of the
thoughts that led to them.

Recording a video of the entire lecture—
including a picture of the board and the lec-
turer, along with an audio track—lets

students follow the lecture remotely and recall pre-
vious sessions. To record or transmit classes, stan-
dard Internet video broadcasting systems have
become popular. This allows taking advantage of
the availability and straightforward handling of
state-of-the-art video broadcasting software.

Existing solutions either focus on recording and
transmitting a session or using videoconferencing
tools to establish a bidirectional connection, or
feedback channel. This approach does not support
the teaching process as such, and it also introduces
additional issues. Technical staff must be on hand
at least for setup and maintenance. The more pro-
fessional approaches require camera work and
audio recording personnel. Standard video Webcast
tools make the recording’s technical quality inap-
propriate for educational content. Text and draw-
ings, either from slides or the chalkboard, tend to
be poorly encoded either because video compres-
sion omits sharp edges or because delivering the
content smoothly requires a high-bandwidth
Internet connection, and some students cannot eas-
ily access the video from a remote location.

Educational mini-applications such as dynamic
Web pages, flash animations, or Java applets can
be used for presentation as well as for individual
training by the student at home without imposing
restrictions on the content or representation.
However, using conventional authoring systems,
the ratio of production time to the duration of the
produced learning unit tends to be wildly dispro-
portionate, mainly because traditional teaching
know-how does not easily match contemporary
authoring tools.1

In addition to technical efforts, using these units
to structure didactical content for the Web requires
a huge amount of work. Given the lack of a stan-
dard, the implementation and interfacing possibil-
ities vary as much as their purposes. This makes
reuse or adoption by third parties almost infeasi-

ble, while reassembly usually requires a complete
rewrite.

WHAT TEACHERS NEED
It makes sense to assume that slide shows, video

recordings, and e-learning modules directly result
from the search for answers to the educational
field’s most pressing concerns. An analysis points
directly to the following needs:

• support for classroom teaching that includes
the possibility of integrating educational mini-
applications;

• tools that support the preparation of class-
room teaching; and

• synchronous and asynchronous remote-teach-
ing support.

Clearly, given its status as their core job, teach-
ers must consider classroom instruction their first
priority. This makes it likely they will refuse any
tool that does not leverage the experience and prac-
tical knowledge they have gained in a lifetime of
teaching. An excellent teacher should remain excel-
lent whether aided by electronic devices or not.
Further, becoming familiar with a given technology
should require little time. Any tool must thus ensure
that it conforms to the teacher’s established work-
ing habits while adding value to the teaching expe-
rience. Given that every teacher has a different
perception of what constitutes a good lecture,
instructors must be able to change tools according
to their preferences and ideas.

A smooth lecture performance depends on the
quality of the preparation, which in turn consists
of gathering content, structuring the lecture, and
preparing didactic elements such as charts, figures,
and pictures. Multimedia elements can be useful
didactic tools in this context.

The increasing use of such elements requires even
greater preparation effort. To avoid redundant
work—such as presetting the lecture on paper—
computer-based education tools must support this
process conveniently. This involves preserving as
much freedom as possible while allowing as much
structure as needed. A teacher should retain control
over the amount, order, and elements of the mater-
ial to be included in the lecture. An experienced
teacher, for example, can hold an excellent lecture
spontaneously, backed by life experience only.

Synchronous remote teaching, such as video-
conferencing, can provide courses that resource
constraints would make impossible otherwise. In
addition to helping students recall past lecture con-

Slide shows, video
recordings, and

e-learning modules
result from the

search for answers
to the educational

field’s most pressing
concerns.

tent, asynchronous remote teaching provides ben-
efits that assist students in reviewing past lectures
to catch up on missed content or prepare for exam-
inations, and, if they are physically impaired, gives
them greater overall access to lectures. Additionally,
institutions promote lecture recording and broad-
casting because they anticipate that these archives
will enhance the institution’s knowledge base and
enhance its prestige.

Synchronous or asynchronous teaching offers a
valuable enhancement for students, but teachers will
implement it only if doing so entails as little over-
head as possible. In essence, teachers need a tool
that substantially assists in their preparation and
delivery of lectures, allows easy integration of var-
ious didactic media, and optionally supports syn-
chronous remote teaching with little or no lecturer
overhead. This involves realizing the twin priorities
of providing the highest amount of assistance on
one hand while permitting the greatest degree of
freedom during class on the other.

SURVEYING THE JUNGLE
Schools and universities form a sprawling, het-

erogeneous playground. Developers who want
their software system to achieve sustained success
must build it to survive in an environment that con-
sists of a variety of software and hardware config-
urations. More importantly, they must make it
adaptable to different software ideologies by, for
example, avoiding design decisions based on their
political biases toward various operating systems.

Baseline requirements
The software must fit the existing hardware

infrastructure and should be easily adaptable to
working with other multimedia applications.
Developers should also avoid excessive concentra-
tion on the construction of proprietary specialized
solutions, a trend that has resulted in the notable
absence of generic, sustainable, and reusable
approaches to e-learning. The hardware and soft-
ware that support classroom teaching must elimi-
nate as much overhead as possible.

Teachers who enhance their lessons with com-
puting devices should still be able to step into the
classroom and start lecturing as usual. Both teach-
ers and students must take the technology for
granted—which cannot occur until it becomes
ubiquitous. This, however, requires the seamless
integration of structural changes or functional
enhancements—such as the addition of new media,
changes in technical formats, or simply an upgrade
to new hardware.

Realistic expectations
Vendor advertising claims to the contrary,

lecture halls or seminar rooms are not pro-
fessional recording studios. Consequently,
most current systems will not yield profes-
sional-quality recordings just by plugging a
microphone into a sound card and starting
the lecture. A realistic approach should also
emphasize reliability: Systems must continue
working after their individual parts fail, at
least at the level of providing switchover or
backup functionality.

Successful remote teaching requires an
awareness of the targeted students’ technical
prerequisites and takes into account future
technological or target-group shifts. For example,
following a remote lecture for the first time pre-
sents a formidable psychological barrier when the
participant must first install the client software. We
can’t assume that all students have an Internet con-
nection, let alone a high-bandwidth connection.
For example, a 2003 survey of engineering students
in Berlin revealed that although 93 percent had
Internet connectivity, more than 50 percent had
only a modem connection.1

Given these statistics, we advise broadcasting at
different quality levels, splitting the content into
different streams, and providing the remote viewer
with the choice of turning off individual audio,
video, or slide streams for a given broadcast.
Additionally, content should be distributable by
offline means such as DVD.

Seeking sustainability
The more specialized a solution, the lower the

probability of its reuse—which directly affects its
sustainability. Further, just as in software engi-
neering, monolithic approaches hinder partial
reuse. For example, extracting individual slides
from a presentation recorded entirely as com-
pressed video can be cumbersome. Additionally,
the content of many course topics, curricula, and
presentations undergoes rapid changes because of
technological innovations, legislative alterations,
or cultural developments.

Therefore, development should focus on creating
content rather than administering it. Exclusively
building content-management systems or perform-
ing excessive research on metadata will not help to
achieve this goal nor reduce costs.

A proposed software environment for multime-
dia-enhanced teaching should offer more than just
the management of individual educational units. It
must provide a complete solution that allows the

June 2005 59

Developers who
want their software
system to achieve
sustained success

must build it to
survive in an

environment that
consists of a variety
of configurations.

60 Computer

integration of educational mini-applications and
fundamentally supports the creation and distribu-
tion of generated content.

Integrating technologies for teaching in the tar-
geted environments while supporting reusability
and cooperation between different organizations
and systems requires high flexibility on the one
hand and high reliability on the other. Ideally, solu-
tions will integrate seamlessly into a teacher’s work-
flow using the hardware the institution provides,
while available personnel can easily manage con-
figuration.

INSIDE THE BLACK BOX
What does this reliable, ubiquitous, adaptable,

and easy-to-use technology-integrating black box
look like from the inside?

The component-based software engineering
approaches proposed over the past several years
for application areas include the tools built with
the Eclipse Rich Client Platform (www.eclipse.org).
We propose that these approaches offer a perfect
solution for creating classroom-supporting appli-
cations. Further, service orientation can provide
loose coupling between components inside a spe-
cific framework,2,3 which allows for their dynamic
download and deployment from remote sources.
These components subsequently provide their ser-
vices in the local framework and add functionality
to an application during runtime, as needed.

Generic classroom installation
In a generic scenario, after installing the class-

room software, users configure it according to the
application’s specific needs. To achieve this, they
use tools that specify what will be used rather than
how it will be implemented. Subsequently, the sys-
tem analyzes its environment, downloads compo-
nents from remote repositories as needed, and
assembles these services into a composition that
provides the required functionality.

An audio recording wizard provides one exam-
ple of such a configuration and environmental
analysis tool.4 An expert system presented via a
GUI wizard guides the user through the systematic

setup and test of the sound equipment. The result,
an initial modified composition description, con-
tains a set of filtering services needed for the pre-
and postprocessing of a given recording. While the
lecture is being recorded, the system monitors and
controls important parts of the sound hardware.
For example, it detects and reports a range of han-
dling errors and hardware failures. The system also
simulates and automatically operates standard
recording-studio equipment such as graphic equal-
izers, noise gates, and compressors.

Remote teaching
Another example, a whiteboard application, cap-

tures participants’ written text, then stores and
transmits this data to interested clients over the
Internet. To provide additional functionality, the
teacher uses a wizard to choose from a list of ser-
vices—provided by locally or remotely available
components—that can be seamlessly integrated
into the lecture. When the lecturer chooses a cer-
tain service, such as a bubble-sort visualization
mini-application, the actual component downloads
and the whiteboard core displays the service. The
same service can be used on the client side, possi-
bly provided by a different component.

In a video-streaming scenario, various services
could be used to convert the content into different
formats. A receptor service receives the incoming
connection requests, then chooses and configures
the right converter services to mediate between the
captured video type and the format type that can
display it on the client’s software.

The availability of downloadable components
provides one of our proposed approach’s most ben-
eficial elements. Yet the question of how to build
these remote repositories remains unanswered.
Given the generic approach used to build compo-
nents that provide their functionality via services,
one task is to define service contracts in the form
of interface descriptions. After this, arbitrary par-
ties can share their component implementations in
those repositories. The information specified in a
service contract must be decided in the context of
the specific domain. Given this restriction, syntac-
tical interface descriptions combined with a few
metadata properties will suffice in most cases.

The approach we propose may seem abstract,
but it can be implemented pragmatically using
established technologies.

SOPA
As Figure 1 illustrates, the Self-Organizing Pro-

cessing and Streaming Architecture (SOPA) (www.

Execution platform

SOPA-using applications

SOPA

Component framework

Component
discovery and
deployment

Figure 1. Self-
Organizing
Processing and
Streaming
Architecture (SOPA).
This framework
manages multimedia
processing and
streaming
components
organized in a flow
graph that features
autonomous
assembly of
stream-processing
components.

sopa.inf.fu-berlin.de) works well with our ap-
proach. This framework manages multimedia pro-
cessing and streaming components organized in a
flow graph that features autonomous assembly of
stream-processing components.5 The dynamically
organized processing graphs use components from
various distributed sources. SOPA installs these
components on the fly according to a graph’s
requirements, which derive from its specific pur-
pose and are assembled according to an applica-
tion’s needs. An XML file describes the graph that
glues these components together.

SOPA uses general properties to describe nodes—
for example, to tell the system to select an audio
codec that compresses to a certain bandwidth. The
graph’s structure can be changed and its nodes
updated while the system runs, as Figure 2 shows.
The implementation uses Oscar (http://oscar.
objectWeb.org), Richard S. Hall’s open source
implementation of the OSGi framework,6 as the
underlying component model.

SOPA currently focuses on multimedia-process-
ing and Internet-streaming applications on either
the server or client side. On the server side—on a
video streaming server, for example—SOPA inte-
grates and manages codecs according to the con-
necting client’s capabilities at runtime. Further, it
supports seamless and transparent reconfigurations
and updates to the client by dynamically adapting
stream processing to user demands.

For each specific demand, SOPA uses Eureka—a
Rendezvous-based component discovery and deploy-
ment engine7—to assemble a special processing graph
that uses components discovered locally or in remote
repositories. When accessing remote repositories,
SOPA retrieves the requisite components from the
remote source and deploys them locally.

SOPA ultimately seeks to ease the development
of applications that need an extensible streaming
and processing layer while also decreasing the
administrative maintenance workload. More
specifically, SOPA provides a round-up solution
that serves as an extensible framework for manag-

ing multimedia components. SOPA synchronizes
different independent multimedia streams, such as
slides and video streams, and uses an application-
independent approach to describe the handling of
concrete content such as converting from one mul-
timedia format to another.

E-CHALK
The E-Chalk software system (www.e-chalk.de)

captures and transmits chalkboard-based lectures
over the Internet. Conceived and supervised by
Raúl Rojas and developed by his group at the Freie
Universität Berlin,8-10 E-Chalk enhances classroom
teaching by integrating the multimedia features of
modern presentation software with the traditional
chalkboard. The software simulates a chalkboard
using a touch-sensitive computer screen on which
the lecturer works using a pen. This approach pre-
serves the didactical properties of the traditional
chalkboard while helping instructors create mod-
ern multimedia-based lectures.

Inside E-Chalk, SOPA handles on-the-fly stream-
ing and recording of lectures. E-Chalk comes with
a set of nodes that can handle and convert differ-
ent media types and the necessary XML graph
description. When a teacher starts E-Chalk to
record or transmit a lecture, the media graph has
already been built and the system is already live
and online. During media graph construction, the
system also checks for updates. At this point, the
system updates any nodes that require it.

Using SOPA, students also could receive E-Chalk
streams using QuickTime or Windows Media
Player. To accomplish this, a receptor—a generic
media node—waits for an incoming connection and
checks its type. Depending on the connecting client’s
type, it restructures the given media graph, performs
searches, and downloads nodes that support the
new media types, using Eureka if necessary.

The E-Chalk software works with a variety of
hardware components that instructors can substi-
tute for the traditional chalkboard. For example,
a lecturer can write on a digitizer tablet or on a

June 2005 61

Figure 2.
A streaming graph
automatically
assembled by SOPA
to transmit and filter
an audio and video
broadcast.

L: audioserver
T: target

L: filewriter1
T: pipe

L: videoserver
T: target

L: filewriter
T: pipe

L: videocoder
T: pipe

L: videosource
T: source

L: micdetect
T: pipe

L: vumeter
T: pipe

L: fork
T: fork

L: audiosource
T: source

L: audiocoder
T: pipe

L: noisegate
T: pipe

62 Computer

tablet PC, using an LCD projector to display the
computer screen’s content against a wall.
Instructors also can use digitizing whiteboards, like
those shown in Figure 3, while an LCD projector
displays the screen content on a suitable surface.

The software transforms the screen into a black
surface upon which the instructor can draw using
different colors and pen thicknesses. Scrolling up
and down on the board vertically provides an
unlimited writing surface. The lecturer can use an
eraser to delete part or all of the board’s content.
Images from the Web or a local hard disk drive can

be placed on the board during a lecture. E-Chalk
provides access to CGI scripts to help implement
the interfacing of Web services.

The instructor also can use educational mini-
applications in the form of Java applets pulled from
the Internet on the board. When the lecturer uses a
reserved handwriting-recognition color to draw
strokes on the board, the handwritten input passes
to a mathematical formula recognizer. The recog-
nizer transforms the input and passes it to other
components such as the Mathematica or Maple
interface. This can be useful for presenting partial
results or to annotate the plot of a certain mathe-
matical function. When the lecturer needs a com-
putation’s result, Mathematica or Maple answers
with text or an image.

E-Chalk provides another means for interacting
with third-party components: Chalklets. These
applications interact only through strokes—they
recognize drawings and gestures from the screen
and respond by drawing their results on the board.

When an E-Chalk lecture closes, the system auto-
matically generates a PDF transcription of the
board content. The transcription can be generated
either in color or in black and white.

Macros—E-Chalk’s means for preparing lectures
in advance—provide a prerecorded series of events
that an instructor can call up and replay on the
board during a lecture. To do this, the instructor
draws the portions of the lecture to be stored in
advance. During the lecture, the macros replay
either at their original speed or at an accelerated
rate determined by the user. Automatically gener-
ated macros can be used for visualization.

E-Chalk records all events from the screen or
tablet, together with the lecturer’s voice and an
optional video. The lecture can also be transmitted
live over the Internet and synchronized with video-
conferencing systems, such as Polycom ViaVideo,
for student feedback.

Remote users connect to the E-Chalk server to
view everything as seen in the classroom. They can
choose to receive the audio and, optionally, a small
video of the teacher. A complete E-Chalk lecture
with dynamic blackboard image, audio, and video
can be maintained with a connection speed of
roughly 128 Kbps. Without the video stream, the
required connection bandwidth drops to at most
64 Kbps.

Java-based playback provides the most conve-
nient means for following a lecture. In this case, the
viewer requires nothing more than a Java-enabled
Web browser. It isn’t necessary to install a plug-in
or client software manually.

Figure 3. E-Chalk system used in a lecture hall at Technical University Berlin.

Figure 4. An E-Chalk lecture replayed on a mobile device,
with audio and board content replayed at 16 Kbps.

Other options include following the lecture in
MPEG-2 format on a DVD, a Java-enabled PDA,
or a third-generation mobile phone that runs
RealPlayer, as Figure 4 shows. When viewing
archived lectures, the remote user sees a control
console like the one shown in Figure 5 and uses typ-
ical VCR tools such as pausing, fast-forwarding,
and rewinding to regulate the content flow.

EXYMEN
The Exymen software framework (www.exymen.

org), shown in Figure 6, seeks to fill the role of a
universal cross-platform multimedia editor11 by
becoming the rapid prototyping tool of choice for
developers of new media formats and codecs.
Exymen’s developers also promote the tool by offer-
ing it as a free download for editing media content.

The editor provides a cross-platform GUI and
defines generic data structures and operations for
handling time-based media abstractly. Developers
can plug in components that fill the abstract data
structures with content by providing concrete for-
mat-specific handlers. These extensions can be
loaded and updated without workflow interrup-
tion at runtime. Components can use both the
framework and other components, assisting exten-
sion development through software reuse.

Developers can provide components to the sys-
tem from remote locations using Eureka. Several
plug-in components have already been developed
for Exymen, while all types of E-Chalk content can
be edited individually or synchronously.

Exymen can edit audio content supported by the
Java Media Framework—such as wav files, Quick-
Time, or MP3 formats. It also can edit and syn-
chronize Web-exported PowerPoint slides. Exymen
can use SOPA’s media nodes for editing archived lec-
tures because it shares the local component cache
with SOPA. A dedicated Exymen component reads
in media graph descriptions to find conversion paths.

M any open questions remain concerning our
approach to architecting multimedia envi-
ronments for teaching, but we believe that

by using our requirements analysis to classify pro-
posed aids and by building solutions that adhere to
our proposals, many mistakes and much futile or
redundant work can be avoided. �

Acknowledgments
The E-Chalk system, an ongoing project at Freie

Universität Berlin since 2001, was conceived and
is supervised by Raúl Rojas. Several others have

contributed to the system, including Kristian Jantz,
Ernesto Tapia, Christian Zick, Wolf-Ulrich Raffel,
Mary-Ann Brennan, Margarita Esponda, and—
most noticeably—Lars Knipping in his doctoral
dissertation.

References
1. G. Friedland et al., “E-Chalk: A Lecture Recording

System Using the Chalkboard Metaphor,” Int’l J.
Interactive Technology and Smart Education, vol. 1,
no. 1, 2004, pp. 9-20.

June 2005 63

Figure 5. A lecture recorded with the E-Chalk system and replayed in a Java-
enabled Web browser.

Figure 6. Exymen software framework, used here to edit a recorded E-Chalk
lecture.

64 Computer

2. R.S. Hall and H. Cervantes, “Challenges in Building
Service-Oriented Applications for OSGi,” IEEE
Comm. Magazine, May 2004, pp. 144-149.

3. H. Cervantes and R.S. Hall, “Autonomous Adapta-
tion to Dynamic Availability Using a Service-Oriented
Component Model,” Proc. Int’l Conf. Software Eng.
(ICSE 2004), IEEE Press, May 2004, pp. 614-623.

4. G. Friedland et al., “The Virtual Technician: An
Automatic Software Enhancer for Audio Recording
in Lecture Halls,” Proc. 9th Int’l Conf. Knowledge-
Based & Intelligent Information & Eng. Systems,
LNCS, Springer, to appear Sept. 2005.

5. G. Friedland and K. Pauls, “Towards a Demand-
Driven, Autonomous Processing and Streaming
Architecture,” Proc. 12th Int’l IEEE Conf. Eng.
Computer-Based Systems (ECBS 2005), IEEE Press,
2005, pp. 473-480.

6. R.S. Hall and H. Cervantes, “An OSGi Implementa-
tion and Experience Report,” Proc. IEEE Consumer
Comm. & Networking Conf. (CCNC 2004), IEEE
Press, 2004, pp. 394-399.

7. K. Pauls and R.S. Hall, “Eureka—A Resource Dis-
covery Service for Component Deployment,” Proc.
2nd Int’l Working Conf. Component Deployment
(CD 2004), LNCS 3083, Springer, 2004, pp. 159-
174.

8. G. Friedland, L. Knipping, and R. Rojas, “E-Chalk
Technical Description,” tech. report B-02-11, Dept.
Computer Science, Freie Universität Berlin, 2002.

9. R. Rojas et al., “Teaching with an Intelligent Elec-
tronic Chalkboard,” Proc. ACM Multimedia 2004,
Workshop on Effective Telepresence, ACM Press,
2004, pp. 16-23.

10. L. Knipping, “An Electronic Chalkboard for Class-
room and Distance Teaching,” doctoral dissertation,
Dept. Computer Science, Freie Universität Berlin,
2005.

11. G. Friedland, “Towards a Generic Cross-Platform
Media Editor: An Editing Tool for E-Chalk,” Proc.
Informatiktage, Gesellschaft für Informatik, Kon-
radin Verlagsgruppe, 2002, pp. 230-234.

Gerald Friedland is a PhD candidate and researcher
at the Center for Digital Media in the Department
of Computer Science, Freie Universität Berlin. His
research interests include intelligent multimedia
technology for electronic learning. Friedland
received an MS (Dipl.-Inform.) in computer science
from Freie Universität Berlin. He is a member of the
DIN-NI 36 committee that cooperates with ISO
SC-36 in creating e-learning standards. Contact him
at fland@inf.fu-berlin.de.

Karl Pauls is a PhD candidate and researcher in
Klaus-Peter Löhr’s Software Engineering and Sys-
tem Software Group, Department of Computer Sci-
ence, Freie Universität Berlin. His research interests
include security and access control in distributed
systems, component-based software engineering,
model-driven development, and distributed systems.
Occasionally, he collaborates with Gerald Fried-
land to work on SOPA’s underpinnings. Pauls
received an MS (Dipl.-Inform.) in computer science
from Freie Universität Berlin. Contact him at
pauls@inf.fu-berlin.de.

Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

www.computer.org/TCsignup/

Looking for a community targeted to your area of expertise? IEEE Computer Society
Technical Committees explore a variety of computing niches and provide forums for
dialogue among peers. These groups influence our standards development and offer
leading conferences in their fields.

JOIN A THINK TANK

