@ Education and Information Technologies 10:1/2, 81-108, 2005.
— (© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A Conceptual View of Web-Based
E-Learning Systems

KLAUS-DIETER SCHEWE

Department of Information Systems & Information Science Research Centre, Massey University, Private Bag 11
222, Palmerston North, New Zealand

E-mail: k.d.schewe @massey.ac.nz

BERNHARD THALHEIM and ALEKSANDER BINEMANN-ZDANOWICZ

Department of Computer Science and Applied Mathematics, Christian Albrechts University Kiel, Olshausenstr.
40, D-24098 Kiel, Germany

E-mail: thalheim @is.informatik.uni-kiel.de

E-mail: binemann @is.informatik.uni-kiel.de

ROLAND KASCHEK

Department of Information Systems & Information Science Research Centre, Massey University, Private Bag 11
222, Palmerston North, New Zealand

E-mail: rh.kaschek@massey.ac.nz

THOMAS KUSS
Center for Cognitive Science, Freiburg University, Germany
E-mail: thomas @ cognition.iig.uni-freiburg.de

BERND TSCHIEDEL

Department of Computer Science, Brandenburgian Technical University at Cottbus,
Universitdtsplatz 1, 03044 Cottbus, Germany

E-mail: tschied @ informatik.tu-cottbus.de

Abstract

Starting from a general framework for web-based e-learning systems that is based on an abstraction layer model,
this paper presents a conceptual modelling approach, which captures the modelling of learners, the modelling of
courses, the personalisation of courses, and the management of data in e-learning systems. Courses are modelled
by outline graphs, which are further refined by some form of process algebra. The linguistic analysis of word fields
referring to an application domain helps to set up these course outlines. Learners are modelled by classifying value
combinations for their characteristic properties. Each learner type gives rise to intentions as well as rights and
obligations in using a learning system. Intentions can be formalised as postconditions, while rights and obligations
lead to deontic constraints. The intentions can be used for the personalisation of the learning system to a learner
type. Finally, the management of data in an e-learning system is approached on two different levels dealing with
the content of individual learning units and the integrated content of the whole system, respectively. This leads to
supporting databases and views defined on them.

Keywords: e-learning systems, course modelling, learner modelling, personalisation, content management

82 SCHEWE ET AL.

1. Introduction

More and more education institutions aim at providing e-learning systems, and more and
more people take advantage of these offers as a chance to advance their knowledge. It
is envisioned that there is a huge market potential for learning technologies. Therefore,
there is an increasing demand for adequate e-learning systems of highest standards, and a
requirement for powerful techniques supporting agile and consistent learning. Expectations,
chances and quality requirements are high. In particular, it still has to be proven that e-
learning systems can provide the same (or nearly the same) teaching quality as contact
classes with human teachers and adequate resources. In order to meet these high expectations
professional design and development support for e-learning systems will be a crucial success
factor.

The challenge in e-learning addresses at least two parts: the dissemination of information
and the concept of teaching. In this article we concentrate on the first aspect, which reduces
the problem to

— deciding, which information is to be presented in which form;

— enabling learners to chart individual routes through this information in accordance to
their preferred learning style;

— adapting the information to different learner types.

We acknowledge that the concept of teaching is wider. For instance, didactics is more
than outlining the content of a course. There is a considerable discussion in education
regarding this wider perspective. However, learning technology has not yet reached a stage,
where all the desiderata of e-learning systems can be supported. Our work emphasises the
conceptual design of feasible systems and thus will demonstrate what can already be done
with available technology, which is already more than is available in many systems on offer.

Our research interest concerns mainly those e-learning systems that are offered via the
world-wide web. These e-learning systems can be considered as specific web-based infor-
mation systems with a focus on the provision of knowledge to learners. In analogy to the
B2C and B2B patterns that are well known in electronic commerce, we may use a pattern
T2S for e-learning systems, where 7' represents a teacher as the service provider and S
represents a student as the service consumer. More precisely, following the classification
pattern in Thalheim and Diisterhoft (2000, 2001), we have a patterm T*2S! with k stand-
ing for knowledge as the service that is provided, and / standing for learning as the major
activity supported by the system.

In this article we start from a general framework for web-based e-learning systems that is
based on an abstraction layer model (Kaschek et al., 2003, 2004b). We present a conceptual
modelling approach, which captures the modelling of courses, the modelling of learners,
the personalisation of courses, and the management of data in e-learning systems. This
exceeds the capability of approaches in Atzeni et al. (1998), Ceri et al. (2003) and Conallen
(2003), which are based on a hypertext-extension of traditional development methods for
data-intensive systems, and approaches such as Van Duyne et al. (2002), which concentrate
only on the presentation aspect.

CONCEPTUAL VIEW 83

Many learning systems that are currently offered are based on curriculum sequencing,
where the learner has to follow a well-defined sequence of learning steps. To some extent
this follows the principles of didactic preparation as described in detail in Kerres (2001).
This is not always adequate, as learning should be better based on active request, i.e. e-
learning systems should support self-organised learning on demand. Systems should restrain
the learners as little as possible, and offer instead as much support as possible to support
their individual learning styles. Consequently, it is important to anticipate the behaviour of
learners and to design systems according to their needs. This includes outlining courses in
such a way that the sequence of learning units, and the style of presentation is personalised to
the type of learner. More abstractly speaking, for each learner type we have to anticipate how
they will navigate through the system. Each possible sequence of learning units followed
by a learner corresponds to a particular course outline, so the most challenging problem is
to determine these sequences and to describe them in an abstract and integrated way. We
will show that this can be modelled by some form of process algebra.

This approach is similar to storyboarding in web information systems
(Binemann-Zdanowicz et al., 2004; Kaschek et al., 2004b; Schewe and Thalheim, 2001),
which has been applied to e-commerce (Binemann-Zdanowicz et al., 2003a; Schewe et al.,
2002; Thalheim et al., 2003), e-learning (Binemann-Zdanowicz et al., 2003b; Jantke et al.,
2003; Rostanin et al., 2002), and information services (Feyer et al., 2000). The SiteLang
process algebra has been introduced in Thalheim and Diisterh6ft (2001). A short description
of outline graphs also appeared in Binemann-Zdanowicz et al. (2004).

We also address the problem how to discover the best outline graphs. We observe that an
atomic learning unit is always centered around a single learner activity by the learner, and
this activity can be described by a verb. Therefore, the idea is to analyse verbs. Fortunately,
the number of verbs in a language such as English is relatively small, so it is not an
intractable approach. In particular, we suggest to analyse the word fields of verbs, which
combine aspects of morphology, i.e. the forms of the written or spoken word, phonology,
i.e. the sound of the spoken word, syntax, i.e. the construction of sentences using the word
forms, semantics, i.e. the meaning(s) of the word, and pragmatics, i.e. the usage of the word
in written or spoken language. This gives rise to determining the data needed to perform
the activity, the guidance how to perform the activity, and the explanation of the effect of
the activity.

The use of linguistic analysis for the design of web information systems has already been
proposed in Ravenscroft and Matheson (2001) and Thalheim and Diisterhoft (2004) based
on computational linguistics (Hausser, 2001). In addition, the use of metaphors has been
proposed in general in Thalheim and Diisterhoft (2000) and investigated in Schewe et al.
(2002) for applications in e-banking, and in Rostanin et al. (2002) for e-learning.

Furthermore, the quality of e-learning systems crucially depends on the designers’ un-
derstanding of the learners and their needs. Therefore, it is necessary to first obtain an idea
of the expected learners. This may lead to certain learner profiles. Such profiles may be
determined by the different goals of the learners, their different intentions, their different
behaviour, their information needs, their levels of required support, etc. However, we go
further and discuss dimensions that are closer to the particular interest of modelling learn-
ers instead of users of arbitrary web information systems or banking customers. However,

84 SCHEWE ET AL.

similar to the existing work found in the literature we will obtain a learner space. We then
discuss how points in this space can be combined into learner types.

Our approach adopts the whole-person approach from Martinez (2001) and the work
on user profiling by Kaschek et al. (2004b) as far as we base it on learner dimensions.
Also Hiibscher (2001), Merrill (1983) and ONTO-LOGGING Consortium (2002) discuss
learner modelling. A short description of learner modelling appeared in Kaschek et al.
(2004a).

Furthermore, each learner type will give rise to intentions as well as rights and obligations
in using a learning system. Intentions can be formalised as postconditions, while rights and
obligations lead to deontic constraints. The intentions can be used for the personalisation of
the learning system to a learner type. We will discuss personalisation based on subgraphs,
but there are other techniques such as providing different granularities through splitting
and merging units. Reduction to subgraphs can be formally supported by Kleene algebras
with tests (Kozen, 1997). Splitting of units based on cohesion pre-orders was investigated
in Feyer et al. (2000) and briefly described in Binemann-Zdanowicz et al. (2004).

Finally, we address the problems associated with the system’s content, and partly with
its functionality. We assume that learner types have been determined, and a course outline
consisting of learning units and navigation links between them has been set up. While these
already determine the functionality in a rough way, our interest is looking at the system
from a more systems-oriented perspective and asking how we can support the learning
units. As e-learning systems are data-intensive systems, we adopt the approach by Feyer
et al. (2000), which approaches the data management problem in web information systems
in an integrated way. According to this we obtain two levels of data management: a global
level that is captured by a global database schema, and a local level that is captured by
views, which represent the data content of the learning units.For both levels conceptual data
models such as the Higher-Order Entity-Relationship model (Thalheim, 2000) are useful.

Among the more specific literature on e-learning, especially web-based e-learning sys-
tems very little attention is paid to the aspect of content modeling. Bergstedt et al. (2003)
study similarities between content management systems (CMSs) and e-learning systems
and conclude that using CMSs in e-learning would improve the quality of e-learning sys-
tems. The work in Qu and Nejdl (2003) and Sessink et al. (2003) investigates the metadata
standard SCORM. Sessink et al. (2003) identify the need for supporting databases that are
not in the SCORM 1.3 standard. Qu and Nejdl (2003) use XML to encompass incompatibil-
ities between RDF and SCORM metadata. Mohan and Brooks (2003) address the problem
of discovering learning objects from the semantic web and argue that this will improve
learning. However, this depends on the semantic understanding of the web, which despite
the merits of the research efforts in this area is still beyond reality. A short description of
our approach to data modelling in e-learning systems appeared in Rostanin et al. (2004).

We present our general framework in Section 2. Then we address the modelling of courses
via outline graphs in Section 3, followed by a discussion of linguistic analysis in Section
4 as a means for setting up adequate course outlines. Section S is then devoted to the
classification of learners following the whole-person approach from Martinez (2001). In
addition, we discuss intentions, rights and obligations that are associated with learner types.
These link the learner types to the course outlines. Furthermore, intentions of learners can

CONCEPTUAL VIEW 85

be used to personalise learning system to the needs of the learners. This will be described in
Section 6. Finally, in Section 7 we describe how the data in the various learning units can be
modelled by using a two-level approach. We conclude with a brief summary in Section 8.

2. General Design Considerations

E-Learning Systems are large web-based information systems, and as such they share a
lot of similarities with web information systems in general. Consequently, systems can be
largely designed along the same principles that apply to traditional information systems.
However, a particular focus has to be put onto the fact that the system will be web-based,
and that its major purpose is to support learning.

This leads to important questions such as “Who are the learners?”, “Which learner in-
tentions and behaviour shall be supported?”’, “Which technical devices will be used by
the learners?”, etc. We will now look at these questions into more detail focussing on five
different aspects: purpose, usage, content, functionality and presentation.

2.1. Aspects of e-learning systems

The purpose aspect is a very general one centered around a mission statement for the system.
The primary question is: what is the purpose of the system? In e-learning systems the major
purpose may be to provide learning material to students including useful hints and links to
supplementary literature. A second related question is this: Are there several minor purposes
as well? In commercial e-learning systems a minor purpose may be to attract students to
book further courses, in which case the system would be a mixture of an e-learning and an
e-commerce system. A third question associated with purpose concerns their time-scale.
Some of the intentions may be long-term others short-term.

Once some clarity with respect to the purpose of the e-learning system has been obtained,
the question arises by whom and how the system will be used. As a web-based system it is
usually open, so it is important to anticipate the behaviour of the learners. Therefore, it is
necessary to first obtain an idea of the expected learners. This may lead to certain learner
profiles. Such profiles may be determined by the different intentions of the learners, their
different behaviour, their information needs, their levels of required support, etc.

So, the activity of learner profiling will lead to a list of profiles of expected learners who
are to be supported by the system. This influences the content of the system’s pages, their
logical organisation, the enabled navigation links between these pages, and maybe even
their presentation. More abstractly speaking, for each learner profile we have to anticipate
how they will navigate through the system. Each possible sequence of pages followed by
a learner corresponds to a particular course outline, so the most challenging problem is to
determine these sequences and to describe them in an abstract and integrated way.

The usage of an e-learning system depends on whether the control of the learning process
is left to the learner or the system. In both cases, however, it is assumed that the learners are
willing to learn and match the required prerequisites. Learners normally enter the system
more than once continuing a specific learning programme. This requires some authentication

86 SCHEWE ET AL.

mechanism, especially if the learning progress is controlled by the system. Quality criteria
are set by the teaching quality, and in the end, by the increase of knowledge on the side of
the learners.

The content aspect is central to the development of the system, as it concerns the question:
“Which information should be provided?”, which is coupled with the problem of designing
an adequate database. However, the organisation of data that is presented to the learner via
the web-interface is significantly different from the organisation of data in a database. So,
organising the data content of the system means to investigate the decomposition, structuring
and classification of datain such a way that the course outline(s) can be adequately supported.

Thus, modelling the content of a system has to be addressed on at least two levels: a
logical level leading to databases, and a conceptual level leading to the content of pages.
Both levels have to be linked together. Furthermore, in both cases abstraction mechanisms
should be used. While such abstraction mechanisms are established in the area of databases,
they are still a matter of research for web-based systems and in particular for e-learning
systems.

Modelling content must take into account that information must be presented in different
ways to different learners. This depends on the learner profile, the communication channel,
and the available devices. Modelling content has to provide mechanisms to tailor the content
automatically according to these parameters.

The functionality aspect is coupled with the question, whether the e-learning system
should be passive or active. A passive system would only allow a learner to navigate
through the pages without any activity. In these cases the major problem associated with
functionality is to set up an adequate navigation structure.

In an active system, however, information would also be required from the learner. From a
conceptual point of view, the main purpose of functionality modelling is to identify functions
that are available to support the activities of the learners, which were identified in the course
outline. Such functions can be system-specific functions in order to process learner input
or general support functions.

The functionality of e-learning systems mainly supports the navigation through the learn-
ing material. In contrast to other types of web-based systems, this navigation is a long-
term process with usually many interruptions. More sophisticated systems would provide
system-driven repetition and feedback. Also, personal information needs can be supported
by providing an interface to e-mail.

Finally, the presentation dimension concerns the realisation by web pages. This depends
on the support of technical end-devices such as computer screens, television, cell phones,
etc. and set layout preferences. This is partly done in accordance to results from learning
psychology trying to direct the attention of the learners to the most relevant parts first. This
will give them the impression of a well-organised system.

2.2. Abstraction layers in e-learning systems

In this section we present a framework for the design of e-learning systems. The framework
is based on an Abstraction Layer Model, which is illustrated by Figure 1. From top to bottom

CONCEPTUAL VIEW 87

Definition Layer

Course Outline

Didactic Layer

Conceptual Modelling

Tutorial Layer

" -content

Style Definition ~_-specificali

unit
specification

Presentation Layer

._.-r'ép ository

Implementation ecification

Implementation Layer
functionality specification

Figure 1. Abstraction layers in web-based e-learning systems.

we identify a definition layer, a didactic layer, a tutorial layer, a presentation layer, and an
implementation layer.
The general ideas of this model are as follows. We identify several layers of abstraction:

— The top layer is called the definition layer. It is used to describe the system in a general
way: What is the purpose? What are the course goals? Who are the expected learners?

— The next lower layer is called the didactic layer, which is used to concretise the ideas
gathered on the definition layer. This means to get a clearer picture of the different
learners and their profiles. The major part of this layer, however, deals with the outline
of the course. That is to identify course units and paths through these units.

— The central layer is the tutorial layer. Whilst the didactic layer did not pay much attention
to technical issues, they now come into play. The various units appearing in the course
outline have to be analysed and integrated, so that each unit can be supported by a
combination of some data content with some functionality.

— The next lower layer is the presentation layer which is devoted to the problem of asso-
ciating presentation options. Finally, the lowest layer is the implementation layer, which
addresses all aspects of the physical implementation.

On each layer except the definition layer we identify two dimensions for the description
of the system: focus and modus. The focus dimension distinguishes between local and global
components; the modus dimension distinguishes between static and dynamic components.

Global and static components will be addressed by a repository specification, which
covers all aspects of central data storage and retrieval. Global and dynamic components
will be addressed by a functionality specification, which covers all operation on the stored
data.

Local and static components will addressed by a content specification, which covers
all aspects of the content of course units. Finally, local and dynamic components will be

88 SCHEWE ET AL.

addressed by a unit specification, which covers the learner activities associated with the
learning units.

Each layer is associated with layer specific modelling tasks. The transition from the
definition to the didactic layer is associated with developing the course outline(s) and the
identification of learner profiles. The transition from the didactic layer to the tutorial layer
is associated with conceptual modelling, which addresses database modelling, operations
modelling, view modelling, and unit content modelling. This adds more details to the design,
as we look at single course units, whereas the composition of the course as such has been
dealt with on the didactic layer.

The transition to the presentation layer is associated with the definition of presentation
styles. Finally, the transition to the implementation layer is associated with all implemen-
tation tasks.

3. Course Modelling

Let us now look at ways to describe the navigation of learners through an e-learning system,
for which we may exploit finite, directed graphs for this purpose.

Thus, an outline graph is a finite, directed graph G = (V, E), i.e. V and E are finite sets
with £ C V x V. The vertices, i.e. the elements of V, are called learning units, and the
edges, i.e. the elements of E are links between these units.

Take for example a course dealing with e-learning systems. Then we might have learn-
ing units such as Introduction, Learner Profiling, Course Outlining, Data Management,
Adaptivity, Style Definition, and Implementation. Figure 2 gives a rough picture of the
corresponding course outline with links naturally represented by edges.

3.1. Outline graphs

With each learning unit # € V we associate a view C" describing the data content of
this learning unit. In addition, we may also associate learner types LT, ..., LT, with the

Introduction

Learner Profiling k—ﬁ

Course Outlining Data Management

Style Definition

Implementation

Figure 2. Course outline (sketch).

CONCEPTUAL VIEW 89

learning unit. These indicate that the learning unit is suitable for learners of this type only.
We will describe learner types in Section 5.

Each link £ € E from u; to u, corresponds to a possible transition from the source
learning unit #; to the target learning unit u,. Such a transition should be triggered by an
action initiated by the learner. This action can simply be a navigation, but in general we
may think of more complicated actions. Therefore, each link is associated with the name
of an action that can be issued in that learning unit. In addition, it is also associated with a
data type expressing the information communicated from learning unit «; to learning unit
Uuj.

Actions on a learning unit may depend on the successful completion of the learning unit
by the learner. According to our view this is part of the action specification, and should be
left for further refinement of the outline.

From a more conceptual point of view we model learner interaction with an e-learning
system according to two primitives: transition between learning units and using the func-
tionality offered at a given learning unit. This allows for a two-step modelling procedure to
be applied. First at a coarse-grained level learning units and navigation links are modelled.
Then in a refinement step the actual activities of the the learners are added. This procedure
allows for a good separation of concern with respect to personalisation and localisation.

At first the usage of the system by a particular learner type is modelled. This already
reduces the complexity of the problem. Then the learner behaviour is dealt with locally, i.e.
with respect to a given learning unit, which further reduces complexity. The price for this
advantage is the need to integrate the various outlines and the data used within them.

Instead of emphasising the transitions between learning units and the triggering learner
activities as sketched in Figure 2, we may want to emphasise the data communication
between learning units. As we assume that for any two learning units u;, u; € V there is at
most one link from u; to u, the outline graph can be represented by its adjacency matrix
A ={a; jh<ij<n with

1 if there is a link from u; to u;
i = {O else

Using this representation has the advantage that we get rid of crossing labelled edges in
diagrams. However, we use it in a modified form.

First we use a table T with n columns and rows to represent the matrix. We further fill
the table’s cells T'(i, i) for all i = 1, ..., n with the name of learning unit ; and fill the
table cell T'(i, j) with the labels attached to the edge from u; to u;.

The learner types associated with the learning unit «; will be added at the right side of
the table in the form of an additional column. This extended adjacency matrix will be called
the communication matrix of the course outline.

Figure 3 contains a sketch of the communication matrix for the course outline from
Figure 2. We abbreviated the names of the learning units in the obvious way. As we did
not yet indicate, which learner activities trigger the navigation links, we only put a e into
the corresponding cell of the matrix. Similarly, as we left the learner types open so far, we
could only add LT, into the corresponding cell of the matrix.

90 SCHEWE ET AL.

Intr| e J LT
LP| e LT,
CO| » LT

° DM]| e LT,

SD| o |LT;

Impl|LT,

Figure 3. Communication matrix (sketch).

3.2. Algebraic modelling of course outlines

Letus take now a closer look at the process algebra SiteLang from Thalheim and Diisterhoft
(2001). So, let S = {s1, ..., s,} be a set of learning units, and let A = {oy,..., 0} be a
set of (atomic) actions. Furthermore, assume a mapping o : A — S, i.e. with each action
o € A we associate a learning unit o ().

This can be used to define inductively the set of learning processes P = P(A, S)
determined by A and S. Furthermore, we can extend o to a partial mapping P — S as
follows:

— Each action @ € A s also a learning process, i.e. « € P, and the associated learning unit
o(a) is already given.

— 0Oand 1 are learning process, for which o is undefined. 1 is a content-less learning process,
while 0 stands for a failed learning process.

— If p; and p, are learning processes, then also the sequence p, - p, is aprocess. Furthermore,
if o(p1) = o(py) = s or one of the p; is 1, then o(p; - p») is also defined and equals s,
otherwise it is undefined.

— If p; and p, are learning processes, then also the choice p; + p; is a learning process.
Furthermore, if 0 (p1) = o(p2) = s or one of the p; is 1, then o (p; + p») is also defined
and equals s, otherwise it is undefined.

— If p is a learning process, then also the iteration p* is a learning process with o (p*) =
a(p), if o(p) is defined.

— If p is alearning process and ¢ is a boolean condition, then the guarded learning process
¢ - p and the post-guarded learning process p - ¢ are learning processes with (¢ - p) =
o(p-¢)=o0c(p),if o(p)is defined.

We also use conjunction ¢ - ¥, disjunction ¢ + 1 and negation ¢ for boolean conditions.
Furthermore, let 1 represent ‘true’ and 0 ‘false’. Then the set P of learning processes carries
the structure of a Kleene algebra with tests (Kozen, 1997), i.e. the following rules hold:

CONCEPTUAL VIEW 91

— + and - are associative, i.e. for all p,q,r € Pwemusthave p+(g+r)=(p+qg)+r
and p(qr) = (pq)r;

— + is commutative and idempotent with 0 as neutral element, i.e. for all p, g € P we must

have p+qg=q+p,p+p=pand p+0=p;

1 is a neutral element for -, i.e. for all p € P we must have pl = 1p = p;

for all p € P we have p0 = 0p = 0;

— - is distributive over +, i.e. for all p, g, r € P we must have p(q + r) = pg + pr and
(p+q)r = pr+qr;

— p*q ist the least solution x of ¢ + px < x and gp* is the least solution of ¢ + xp < x,
using the partial order x < y=x+y = y.

We further adopt the convention to write pg for p - ¢, and to assume that - binds stronger
than +, which allows us to dispense with some parentheses. It is also known that the double
use of - for sequence and conjunction and of + for choice and disjunction, respectively,
does not cause any problems. Obviously, if we restrict to boolean conditions only, then the
laws of Boolean algebras apply to conjunction, disjunction and negation.

Furthermore, the association of learning units with learning processes implies that we
also have sorts. As processes associated with different scenes express concurrency, we
claim that p; p, = pop; holds for all p;, p, € P with 6(p1) # o(p2), which leads to a
many-sorted Kleene algebra with tests (Schewe and Thalheim, 2005).

Example 1. The following expression may express a course outline with actions «; and
conditions ¢;.
a1 ((poors + praz(as + ez + grau(as + 1Da) @s)(@r¢s + a13¢7)
(peas(og + Doagaioariioriogs + @rasogoiactiso oot 1017(@120018019) Y120t 13¢9)
ax(@1o0 + ¢11)
In addition we may have the following assignment of learning units s; to the actions
gla) =s1 o(@)=s ola)=s ola)=s; o(as)=s
o(ag) =53 o(a7)=s4 0(ag) =54 0(ag) =154 0(xjo) =54
o(ar) =54 olap)=s4 olap)=s5 o(a) =s5 o(as)=s;s
o(ae) =55 olar7)=s5 o(ag) =s5 o(a) =55 o(axn)=Sss
with the learning units
s; = Introduction s, = Learner Profiling s3 = Course Outlining

s4 = Data Management s5 = Style Definition s = Implementation

4. Linguistic Analysis

Linguistic analysis summarises the activities and techniques that are applied to analyse
natural language descriptions of learners’ activities. The major source of information used

92 SCHEWE ET AL.

for developing e-learning systems is a description of curriculae, which may be delivered in
the form of texts or verbally.

Linguistic analysis takes such natural language descriptions and uses them for analysing
the activities of the learners: Which are these activities? Does the description indicate any
sequencing or continuation? What data is needed for or used by the activities? What are the
relationships between these data?

As learner activities can be described by verbs, we suggest to analyse the corresponding
word fields. We will show that word fields are a valuable source for centering the outline
graph around the central learner activities.

4.1. Word fields

According to Hausser (2001) a word is an abstract concept, which in order to become
concrete needs a word form carrying the grammatical variants. Word fields are a much
more general notion than word forms. Word fields combine different aspects:

morphology, i.e. the forms of the written or spoken word,
phonology, i.e. the sound of the spoken word,

syntax, i.e. the construction of sentences using the word forms,
semantics, i.e. the meaning(s) of the word, and

— pragmatics, i.e. the usage of the word in written or spoken language.

Our restriction to written language communication makes considering phonology obso-
lete. Under this premise we understand a word field to consist of its intext, its context, its
semantics and its pragmatics.

— The intext combines morphology and syntax. We are mainly interested in the latter one,
especially for verbs. In this case we may ask for the basic syntactical form, various
mandatory and optional arguments, variants of the arguments, extensions to the basic
syntax, and relationships and constraints between the arguments of the word when it is
used in sentences.

For instance, the verb “fo teach” uses a mandatory argument “something” and an op-
tional argument “fo somebody”. The basic syntactical form “Someone teaches something
to somebody” expresses an action, specifies the actor and the receiver, and an object used
in the action.

— The context refers to application areas. According to the context we may identify related
words, concepts related to the arguments, categories of actors and actions, and further
constraints.

For instance, in a learning context the verb “fo teach” may be used in a sentence such
as “The teacher teaches e-commerce to third-year students”. In this case we conclude
that the object of the action is subject to an assessment of whether (s) he has learnt and
understood the learning object “e-commerce”. It also implies that a follow-on action, i.e.
the study by the student, is expected.

CONCEPTUAL VIEW 93

— The semantics refers to the meaning of a word in a particular context. For example, the
already used sentence “The teacher teaches e-commerce to third-year students” includes
the meaning of the teacher delivering and explaining material and the student working
through it and reflecting it in a critical way.

— The pragmatics refers to how the word is used in the application context.

4.2. Word fields and outline graphs

Using word fields for the design of dialogues has already been suggested in Thalheim and
Diisterhoft (2004). We suggest a compositional approach to outline graph design based on
generalised phase structure grammars with applicability rules such as immediate depen-
dence and linear precedence rules (Hausser, 2001).

We propose to exploit word fields in an analytic way starting with the syntactic analysis
of sentences. For this of course we also need a sophisticated parsing theory (Hausser, 2001)
to obtain the syntax trees. Within such a tree we can identify the main verb and the used
arguments. The verb can be used as a descriptor for the main activity. The word field of the
verb will tell us, which arguments are expected. This will give us hints for detecting the
required information and the learners involved.

Finally, the various constraints indicate relationships to other activities, e.g. follow-on
activities described by other sentences or relationships to objects used in these other sen-
tences. This gives rise to determine links in the outline graph and the communicated data
associated with these links. It may also indicate that the learning unit is still too broad and
needs to be refined. For instance, we may exploit the specialisation of verbs or objects that
are used as their arguments to the refinement of learning units.

4.3. Metaphors

According to Thalheim and Diisterh6ft (2000) metaphors are language expressions used in
an uncommon language context. Properly applied, they can simplify the task of communi-
cating complex ideas and result in enthusiastic users.

We already pointed out that generating the best learner support depends on having a
model of the learners, i.e. being able to group learners into reasonably constructed learner
types. The e-learning system must be designed such that it stimulates questions by the
learners that can be answered relatively easily. Metaphors can help in this regard. They can
help learners to understand what they can, should, or should not attempt to do next, and
allow the learner to master his/her own learning style.

Human communication is largely metaphorical. It is likely that the lack of metaphors
in traditional human-computer interaction is responsible for some of the problems of this
interaction. Improving human-computer interaction by augmented use of metaphors has the
potential to reduce the number of communication barriers as well as their implications.

Recall that computer applications have at least three language levels:

tool language: This is the language in which the learner interface signals the customer the
semantics of its functionality.

94 SCHEWE ET AL.

discourse language: This is the language used in the universe of discourse to identify
problems, their solutions and quality criteria of all of them.

metaphor language: This language helps the learners understand the state of affairs in the
universe of discourse and what interface functions can be used to achieve their goals.

The generation of metaphors could be supported by logically decomposing the learning
space into a small number of domains that appear homogeneous with respect to the offered
functionality. This permits relating the domains to learner types and expected learner activi-
ties. The generation of metaphors appears then as being connected to finding characterising
names for the relationships bewteen leaner types, expected learner activities and domain.

5. Learner Modelling

In this section we focus on the learner model following an inspiration by the whole-person-
approach from Martinez (2001). In this approach a comprehensive set of human factors for
learner modelling is considered. This leads to conceptual modelling of learners by learner
profiles, i.e. value combinations for a list of learner characteristics. A complete list of such
characteristics will of course depend on the learning domain. Therefore, we concentrate on
selected reasonable characteristics.

5.1. The learner space

We follow Martinez (2001) in considering cognitive, conative, and affective personality
aspects of individuals as key regarding the outcomes of their learning processes. These
psychological aspects impact the learning outcome. Increasing the learning performance
of most learners, if based on adaptation of e-learning systems to learners, thus appears
to require learner characteristics being identified that relate to the mentioned personality
aspects. We shall distinguish between characteristics of the learning style, the learner as a
person, the learning task at hand, and the preferred examination style. The following lists
are assumed to be non-exhaustive.
For the learning style we have the following general characteristics:

Guidance: The degree to which the learner prefers being guided or not in the learning
process.

Visual Modality: The degree to which the learner prefers a presentation in visual manner.
We follow (Rostanin et al., 2002) in using the characteristic modality.

Auditory Modality: The degree to which the learner prefers a presentation in auditory
manner.

Textual Code: The degree to which learners with visual learning style prefer having access
to text.

Illustrational Code: The degree to which learners with visual learning style prefer having
access to images.

Example: The degree to which the learner prefers learning deductively or inductively.

CONCEPTUAL VIEW 95

Characteristics that refer to the learners are:

Persistency: The degree to which the learner in general can or cannot mentally cope with
new material.

Retentivity: The degree to which the learner in general can or cannot memorize learned
material.

Computer literacy: The degree to which the learner has or has not acquired skills in using
modern computing infrastructure for a task at hand.

Curiosity: The degree to which the learner in general is or is not fond of learning new
material.

Learning task related characteristics are the following:

Prerequisites: The degree to which the learner has or has not learnt the required
subjects.

Performance: The degree to which the learner has or has not performed well regarding
background subjects, required subjects or subjects in general.

Motivation: The degree to which the learner is or is not interested in efficiently mastering
the learning task at hand.

Confidence: The degree to which the learner believes to be capable or incapable of suc-
cessfully mastering the learning task.

Characteristics that apply to the examination style are:

Kind: The degree to which the learner either prefers his knowledge or his skills or a
combination of both being checked.

Control: The degree to which the learner prefers his increment in knowledge or skills being
checked.

Evaluation strategy: The degree to which the learner prefers his solution to an examination
problem being evaluated right after its submission or whether he/she prefers all problem
solutions being evaluated at the same time.

Feedback: The degree to which the learner prefers receiving full explanations of the as-
sessments of his/her problem solutions or whether he/she prefers being notified of the
correct results only.

We believe that the chosen grouping of characteristics is obvious and that the charac-
teristics we have defined are obvious and plausible candidates for characteristics in real
learning tasks. We further believe that at least extreme scores in scales for the character-
istics result in manifest options in designing and presenting learning units. We thus do
not discuss these issues here in more detail. Clearly, persistency and retentivity are cogni-
tive; curiosity and motivation are conative; and guidance, evaluation strategy and feedback
are affective personality aspects. Thus indeed our characteristics for the key personality

96 SCHEWE ET AL.

aspects gives at least a hint on how to break them down and make use of these for e-learning
systems.

5.2. Formalising the learner space

In order to describe learner profiles we identified general and subject-specific characteristics
of learners. So formally, we obtain a non-empty set C of learner characteristics. In addition,
for each of these learner characteristics we obtain a linearly ordered set of values, which
from now on will be called the scale of the characteristic. Formally, for each characteristic
¢ € C we have a scale S(c) and a linear order < defined on it.

For example, if the characteristics are abstraction, perception and memory, we may use
a numerical scale, say the integer interval [0, ..., 5], for each of them.

— A low value for abstraction indicates a learner who needs more concrete examples in
order to be able to understand the learning material, whereas a higher level indicates a
better ability of abstract thinking.

— Alow value for perception indicates a need for visualisation, while a higher value indicates
that the learner can cope with textual and maybe even formal writing.

— A low value for memory indicates that the learner often needs to review larger parts of
the learning material, whereas a higher value indicates that this is not needed or that the
learner only needs a brief reminder in a very condensed form.

The learner space LS is the cartesian product of the scales, i.e.

LS =]_[S(c).

ceC

Thus, each element of the learner space is a tuple, and each component of this tuple
indicates the value of a certain learner characteristic. That is, the learner space captures our
knowledge about the different combinations of learner characteristics.

Figure 4 illustrates a learner space with two characteristics, i.e. C = {cy, 3}, and the
scales S(ci) = {v1, v2, v3, v4} With v; < vy < v3 < w4, and S(c2) = {v], v}, v5} with
v| < v) < v5. The learner space LS = S(c1) x S(c) contains 12 tuples.

5.3. Learner types

Thus, the learner space is an adequate way to represent the different learners. However,
we have also seen that there are not so few characteristics of learner types, and for each of
them we obtain quite a few different values to be taken into account. This bears the risk of
a combinatorical explosion of the learner space.

In order to personalise a system to learners, we would have to parameterise each learning
unit and each navigation link by the elements of the learner space or provide functions that
map units and links between them to a personalised course outline. This is only feasible, if

CONCEPTUAL VIEW 97

CoA
Ué LT4
LT
1)/2 LT2
LTy
v} LT LTy

U1 V2 U3 V4

Figure 4. Convex learner types.

either the learner space is small or the personalisation will be the same for many elements
of the learner space.

For instance, if we have 10 different characteristics and each comes with only two different
values in their scale, then we would already have 2!° = 1024 elements in the learner space.
This is far too much.

Therefore, we have to bundle points in the learner space, i.e. instead of attempting to
personalise the system to each combination of characteristic values, we would personalise
it only to learner types. In general, a learner type should correspond to several points in the
learner space. We now discuss two different ways to combine elements of the learner space
to learner types.

A convex learner type LT is a cuboid in LS. In other words, if C = {cy, ..., c,}, then
take intervals [v;, vlf] C S(c;) for all scalesi = 1, ..., n and define

LT = [Jivi. vl S LS.

i=1
Look again at Figure 4. Here we defined six convex learner types:

LT; = {v;} x {v},v3} LT> = {v2} x {v5}
LTs = {vy, v3} x {v]} LT4 = {v1, v2} x {v}}
LTs = {vs} x {v}} LTe = {v3, va} x {v5, v5}

In other words, for learners with value v; for characteristic ¢; we do not make a distinction
between the values v and v} anymore, as this will not have an effect on the system design.

Alternatively, we may apply aggregation functions to the learner space. In this case we
assume that the scales are sets of integers, e.g. intervals S(c;) = [m;, M;]. An aggregate
function on the learner space is an integer valued function f : LS — N.

An aggregate learner type is a subset of LS of the form

LT ={¢eLS|m< f(£) < M}

for some integer interval [m, M].
For instance, in Figure 5 we have taken the integer scales S(c;) = {0, 2, 3,5} and
S(cy) = {0, 1, 4}. Then the aggregation function is a simple addition, i.e. f(v, w) = v+ w.

98 SCHEWE ET AL.

C24
4 LTy LT,
1
LTy LTy
0 LT,

Figure 5. Aggregate learner types.

We then define four aggregate learner types:

LT, = {(v,w) € LS | 0 < f(v, w) < 1}
LT, = {(v,w) € LS | 2 < f(v, w) < 3}
LT3 = {(v,w) € LS | 4 < f(v, w) < 6}
LT, = {(v,w) e LS |7 < f(v,w) < 9}

These learner types are illustrated as well in Figure 5.

5.4. Intentions, rights and obligations

The presence of different learner types indicates different usage of the system. An obli-
gation of a learner type specifies what a learner of that type has to do. A right specifies
what a learner of that type is permitted to do. Both obligations and rights together lead
to complex deontic integrity constraints. We use the following logical language £ for this
purpose:

— All propositional atoms are also atoms of L.

If o is an action on learning unit s and r is a learner type associated with s, then O do(r,)
is an atom of L.

If « is an action on learning unit s and r is a learner type associated with s, then P do(r, o)
is an atom of L.

— If o is an action on learning unit s and r is a learner type associated with s, then F do(r, o)
is an atom of L.

For ¢, ¥ € L we also have —¢p, o A ¥, ¢ V ¥, ¢ = ¢ and ¢ < ¢ are also formulae in
L.

The interpretation is standard. In particular, O do(r, o) means that a learner of type r
is obliged to perform action «, P do(r,) means that a learner of type r is permitted to
perform action ¢, and F do(r, @) means that a learner of type r is not allowed to perform
action «.

CONCEPTUAL VIEW 99

Example 2. If action ag represents an indispensible part of the course, e.g. a compulsory
assignment, each learner will have to take it, once one of the actions «; or o3 have been
executed (condition g or ¢7). Furthermore, assume that in case of ¢ the learner is obliged
to execute actions o ¢ and o7, i.e. we obtain the deontic constraints

Y6 V 97 = O do(learner, ag)
and

@7 = O do(learner, a16) A O do(learner, o;7)

The intention of a learner can be expressed by goals, which can be modelled by post-
conditions to the learning space, which itself is described by an expression in the algebra
discussed in Section 3.

6. Course Personalisation

Let us now discuss some techniques for the personalisation of outline graphs: reduction to
a subgraph, and splitting of learning units.

6.1. Reduction to a subgraph

According to the definition of outline graphs each learning unit is associated with a set of
learner types. As a consequence, given a certain learner type only those learning units that
are associated with it, are accessible for a learner of this type. This leads to the definition
of the subgraph spanned by a learner type.

Formally, let LT be some learner type, and let G = (V, E) be an outline graph. Then the
set of learning units that are accessible to learners of type LT is

V(LT) = {u € V | u is associated with LT}.
The outline graph G(LT) = (V(LT), E(LT)) with
E(LT) = EN(V(LT) x V(LT))

defines the subgraph spanned by LT, i.e. we only consider those links, for which the starting
and the target learning unit are in the set of learning units that are accessible to learners of
type LT.

Of course G(LT) is an outline graph, and all its links are associated with the learner type
LT. In fact, this subgraph models exactly the part of the outline graph that corresponds to
the permitted navigation for learners of type LT.

We may also exploit the algebra from Section 3 to compute a subgraph by equational
reasoning. The general approach is to formulate a problem by using equations or conditional
equations. Furthermore, we obtain (conditional) equations, which represent application
knowledge. This application knowledge arises from events, postconditions and knowledge

100 SCHEWE ET AL.

about the use of the system for a particular purpose. We then apply all equations to solve
the particular problem at hand.
The application knowledge contains at least the following equations:

1. If an action p has a precondition ¢, then we obtain the equation pp = 0.

2. If an action p has a postcondition v, we obtain the equation p = pi.

3. If an action p is triggered by a condition ¢, we obtain the equation ¢ = ¢p.

4. In addition we obtain exclusion conditions ¢y = 0 and tautologies ¢ + ¢ = 1.

The problem of personalisation according to the preferences of a particular learner can
be formalised as follows. Assume that p € P represents the learner space. Then we may
formulate the preferences of a user by a set X of (conditional) equations. Let x be the
conjunction of the conditions in ¥. Then the problem is to find a minimal process p’ € P
such that x = px = p’x holds for all x € P. Preference equations can arise as follows:

1. Anequation p; + p, = p; expresses an unconditional preference of action (or process)
P1 Over pr.

2. Anequation ¢(p; + p2) = @p; expresses an conditional preference of action (or process)
p1 over p; in case the condition ¢ is satisfied.

3. Similarly, an equation p(p; + p») = pp: expresses another conditional preference of
action (or process) p; over p, after the action (or process) p.

4. Anequation p;p, + p2p1 = p1p2 expresses a preference of order.

5. An equation p* = pp* expresses that in case of an iteration it will at least be executed
once.

Example 3. Let us continue Example 1. Assume that we have to deal with a learner who
knows ¢s. This can be expressed by the application knowledge equation x¢s = x for all
x € K. Furthermore, assume three additional exclusion conditions:

50 =0 @51 =0 @502 =0

Taking these equations to the first part of the expression in Example 1 we obtain

a1 ((poaa + @raz(as + g3 + prou(as + 1)es) @s)x
= o1((popsa2 + pr19saz(as + Dz + gapsaa(as + 1Dga)*s)x
= a1((Oaz + Oaz(as + 1)g3 + Oag(as + 1)ga)*s)x

oy lpsx

= o|X
That is, the whole learning space can be simplified to

* *
ai(a79s + a1307)(@sas(og + Dagaioor 1o 2@g + Q7080500140150 6011017

X (@120180019)* Q1201899)0t20(@10 + @11)

Personalisation also means satifying the intention of a particular learner. Let this inten-
tions be formalised by the postcondition ¥ € B. Furthermore, assume that the learning

CONCEPTUAL VIEW 101

space is represented by some process expression p € P. Then the problem is to find a
minimal process p’ € P such that pyy = p’i. In order to find such a p’ we have to use
again the application knowledge.

Example 4. Let us continue Example 1 and look at a user with intention ¢;9. Then we
express application knowledge by the equations ¢jop;; = 0, @109 = 0 and gep; = 0.

Then we can simplify pg;o with the expression p from Example 1 step by step. First we
get (@10 + ¢11)@10 = @10, Which can then be used for

(peas(ag + Dogaioai 101298 + Q030050140150 600 11017(@1200180419) P 1200180910
= peag(ag + Dogarioa 101298910 + Q7080501401505 1017
(@Pr2o18019)* P1act18Pei0
= geag(as + Dagapai1apgseio

Then finally we get

(796 + a1397)pe0ig(ag + 1ooarioors 012008910
= a7@spsaig(as + Dagaigaiaings@io + ai3@r@eag(ag + Dagaooiai2¢8¢10
= a7peag(ag + Dasajoaia2@s@io

This means that the story space can be simplified to

a1 ((poorz + praz(as + Dz + gras(as + Des)*@s)

a7peag(ag + Dagarjoa 120820910

6.2. Splitting of learning units

The reduction to a subgraph obviously leads to an outline graph that is completely associated
with the given learner type. However, it does not change any of the data content of the
involved learning units. This problem is addressed by the splitting of learning units.

Roughly speaking, if we are given a learning unitin an outline graph that is associated with
a given learner type, we may replace this unit by a whole outline graph such that all learning
units in this new outline graph are associated with the given learner type. Furthermore, the
combined data content of the units in this replacement outline graph should be equivalent
to the data content of the original learning unit.

Formally, let LT be some learner type, and let G = (V, E) be an outline graph. Letu € V
be a learning unit associated with LT. Now take another outline graph G, = (V,,, E,) with
the following properties:

V NV, =0, i.e. the two outline graphs have no common learning units;

— all learning units v € V), are associated with the learner type LT

the join of the data contents C, for all v € V,, is equivalent to the data content C,;
there is a distinguished starting learning unit vy € V,, such that all learning units v € V,,
can be reached from vy;

102 SCHEWE ET AL.

— thereis adistinguished final learning unit vy € V,, which can be reached from all learning
units v € V,,.

The first three properties express our intention to replace u by the graph G,, without losing
data content. The last two properties are of technical nature to ensure that this replacement
is formally correct.

So, we obtain a new outline graph G = (V, E) with V = (V — {u}) U V,, i.e. we replace
the learning unit u by all learning units in V,,. Furthermore, a link (¢, u) € E must be
replaced by a link (u/, vg) € E preserving all data types and actions associated with it.
Finally, alink (u, u’) € E has to be replaced by a link (v, u’) € E preserving all data types
and actions associated with it.

However, if we want to preserve the learning unit u for other learner types, we would
first have to double it in G ensuring that one copy is assocated with LT, and the other copy
with all other learner types.

The splitting of a learning unit requires a more detailed specification of the content of
learning units. We will therefore postpone a more technical discussion of splitting to end
of the Section 7.

7. Data Management

The content aspect of e-learning systems concerns the question: Which information should
be provided? This is tightly coupled with the problem of designing an adequate database.
However, the organisation of data that is presented to the user via the pages in an e-learning
system differs significantly from the organisation of data in the database. We conclude that
modelling the content has to be addressed on at least two levels: a logical level leading to
databases, and a conceptual level leading to the content of pages. Both levels have to be
linked together.

As pages correspond to learning units, an abstract description of such a learning unit
would be a pair (u, v), where u is a URL and v is a complex value based on the use of
some type system. We decide to call such a pair a learning object. The term ‘object’ is
used, because pairs constructed out of an abstract identifier and a complex value are called
‘objects’ in the context of object oriented databases.

Using classification abstraction as usual in data modelling, we obtain content types. In
general, every data type can become a content type of a learning unit. Thus, if U denotes a
learning unit, the learning objects of type U are pairs (u, v) consisting of a value u of type
URL and a value v of the content type of U.

A little subtlety comes in here, which makes the definition still a bit more complicated.
When a value of type URL appears inside the content value v, this may be a URL some-
where outside the web information system that we want to develop. However, in the case
where the URL is an internal one, it will be the URL of another learning object, say of
type U’.

Therefore, we extend content types in such a way that instead of the type URL we may
also use /inks £ : U’ with a unique link name ¢ and a name of a learning unit U"’.

CONCEPTUAL VIEW 103

In order to obtain a learning object we would have to replace the links £ : U’ by the data
type URL first. However, the link £ : U’ would force us to use only values of type URL that
are URLSs of the learning unit U’.

Learning objects support an individual learner and only provide a section of the data of
the system. The question arises how the data can be described globally. In fact, we would
need to combine all the content types and set up a database schema. Designing such a
database schema underlies completely different quality criteria. For instance, for databases
we would like to avoid redundancies as much as possible. We would also have to pay much
attention to providing fast and concurrent access to the data.

Therefore, we use a separate level defined by database types. Thus, we obtain a descrip-
tion of the static components on two levels: the global or database level, and the local or
information unit level. On both levels we employ the same type system.

Database types are more or less defined in the same way as the content types.

7.1. Content databases

In order to define underlying databases we could refer to any data model. Due to its con-

venience we prefer to adopt a variant of the Entity-Relationship model (Thalheim, 2000).

According to this model we have database types on various levels k > 0. Usually, the types

of level 0 are called entity types, whereas types on higher levels are called relationship types.
A database type of level k has a name E and consists of

— aset comp(E) = {ry : Ey,...,r, : E,} of components with pairwise different role
names r; and names E; of database types,
— asetattr(E) = {ay, ..., ay} of attributes, each associated with a data type type(a;), and

— and akey id(E) C comp(E) U attr(E),

such that the database types E; € S are all on levels lower than k with at least one database
type of level exactly k — 1. In the following we often write £ = ({r; : E|,..., 1, :
E,}. {ai,...,ay}, id(E)) to denote a database type. The first component in this triple is
the component set comp(E). The second component is the attribute set astr(E). The third
component is the key id(E).

We use this notation to associate two data types with each database type E. These data
types are called the associated data type of E and the associated key type of E. These types
are defined as follows:

— The associated data type of E, denoted as type(E), is

(r1 : key-type(E}), ..., r, : key-type(E,),
ap : type(ar), ..., ay : type(am))

— The associated key type of E, denoted as key-type(E), is defined analogously with the
difference that only those r; and a; are considered that occur in id(E).

104 SCHEWE ET AL.

In particular, if we have a database type E of level 0, then comp(E) is the empty set. This
implies that that there are no fields labelled by r;.

Let us now conclude the presentation of the global database by defining database
schemata. A database schema is simply a collection of database types. Of course, if E;
is a component of a database type E, and E is defined in the schema, then E; must also be
defined in the schema.

Formally, we can define a database schema as follows:

A database schema S is a set of database types satisfying the following condition: If
E € S is a database type, then for all components r; : E; € comp(E) we must also have
E,‘ esS.

We define the semantics of database schemata by the collection of possible databases
prescribed by the database schema. Thus, let S be a database schema. For each database
type E € S we have defined an associated data type type(E) and an associated key type
key-type(E). As these two are indeed data types, they define fixed sets of values, which we
call the set of objects of type E and the set of keys of type E, respectively:

Obj(E) = dom(type(E)) and Key(E) = dom(key-type(E))

As the key id(E) in a database type E is a subset of comp(E) U attr(E), each object of
type E can be projected to akey of type E. Let Oey—uype®) € Key(E) denote the projection
of the object O € Obj(E) to the value of its key.

We use the sets of objects and keys for the database types E € S to define a database
over S as follows:

A database db over S assigns to each database type E € S a finite set db(E) € Obj(E)
of objects of type E such that the following conditions are satisfied:

— Key values are unique, i.e. there cannot be two different O;, O, € db(E) with
Ot [key—type(B)] 7 O2(key—type(E)]-
— Component values exist in the database, i.e. for each O € db(E) and each r : E' €

comp(E) there must exist some O’ € db(E") such that r : Ope, ooy i8 part of O.

7.2. Learning units

The core of a learning unit is defined by a view. A view V on a database schema S consists
of a view schema Sy and a defining query gy, which transforms databases over S into
databases over Sy .

The underlying datamodel itself is not relevant. The defining query may be expressed in
any suitable query language, e.g. query algebra, logic or an SQL-variant, provided that the
queries are able to create links.

This leads to the definition of data unit based on some type system. The type system
must provide base types and type constructors, e.g. record, set and list type constructors.
Arbitrary type expressions are built by nesting these constructors.

A data unit has a name M and consists of a content data type cont(M), which is an
extended type expression, in which the place of a base type may be occupied by a pair

CONCEPTUAL VIEW 105

£ : M’ with a label ¢ and the name M’ of a data unit, and a defining query g, such that
({tm}, gum) defines a view. Here 1, is the type arising from cont(M) by substitution of URL
for all pairs £ : M'.

In order to model functionality operations are added to data units. An operation on a
data unit M consists of an operation signature, i.e., name, input-parameters and output-
parameters, a selection type which is a supertype of cont(M), and a body which is defined
via operations accessing the underlying database.

In order to allow the information content to be tailored to specific learner needs and pre-
sentation restrictions, data units are extended to learning units. The most relevant extension
is cohesion, which introduces a controlled form of information loss. Formally, we define
a partial order < on content data types, which extends subtyping in a straightforward way
such that references and superclasses are taken into consideration.

If cont(M) is the content data type of a data unit M, then let sup(cont(M)) denote the set
of all larger content expressions, i.e. all expressions exp with cont(M) < exp.

A total pre-order <, on sup(cont(M)) extending the order < on content expressions is
called an cohesion pre-order. Clearly, cont(M) is minimal with respect to <.

Small elements in sup(cont(M)) with respect to <, define information to be kept together,
if possible. An alternative to cohesion preorders is to use proximity values, but we will not
consider them here.

A learning unit is a data unit M extended by operations and a cohesion pre-order
=<u. There are other extensions beyond cohesion, but these are not relevant for context
modelling.

If the defining query is evaluated for a learning unit M, we obtain a complex value v of
type ty. Together with a generated URL u this defines a learning object of type M.

Cohesion enables a controlled form of information decomposition, which can be ex-
ploited for the splitting of learning units as indicated in the previous Section 6. If we
want to decompose a learning unit or if we are forced to decompose according to user
requirements or technical restrictions, then we may choose a minimal elements #; €
sup(cont(M)) with respect to <j; such that it satifies the representation requirements.
Note that if we only provide a preorder, not an order, then there may be more than one
such 7.

Taking just #; instead of cont(M) means that some information is lost, but this only refers
to the first data transfer. When transferring #;, we must include a link to a possible successor
containing detailed information. In order to determine such a successor we can continue
looking at all content data types ¢’ € sup(cont(M)) with t; £, t'. These are just those
containing the complimentary information that was lost. Again we can choose a least type
t, among these ¢’ with respect to <, that requires not more than the available capacity. t,
would be the desired successor.

Proceeding this way the whole communication is broken down into a sequence of suitable
units ¢y, tp, . . ., t, that together contain the information provided by the learning unit. Of
course, the cohesion pre-order suggests that the relevance of the information decreases,
while progressing with this sequence. The learner may decide at any time that the level of
detail provided by the sequence 7y, . .., t; is already sufficient for his/her needs.

106 SCHEWE ET AL.

8. Conclusion

In this article we presented a conceptual view of web-based e-learning systems. Starting from
a general abstraction layer model we addressed the modelling of courses, the modelling of
learners, the personalisation of courses, and the management of data in e-learning systems.
Courses are modelled by outline graphs, which are further refined by some form of process
algebra. This process algebra actually gives rise to a many-sorted Kleene algebra with tests,
which can be used to fomally reason about the whole learning space.

The linguistic analysis of word fields refering to an application domain helps to set up
these course outlines. Learners are modelled by classifying value combinations for their
characteristic properties. Each learner type gives rise to intentions as well as rights and
obligations in using a learning system. Intentions can be formalised as postconditions,
while rights and obligations lead to deontic constraints. The intentions can be used for
the personalisation of the learning system to a learner type. We showed that we can use
equational reasoning in the Kleene algebra to reduce the learning space to a subgraph that
represents the learning needs of a particular learner type.

We approached the management of data in an e-learning system on two different levels
dealing with the content of individual learning units and the integrated content of the
whole system, respectively. This leads to supporting databases and views defined on them.
Furthermore, we demonstrated that the adaptivity feature of the learning units can be used
to set up a simple algorithmic approach to personalisation based on the splitting of learning
units. Our ideas have been partly realised in the DaMiT system (Binemann-Zdanowicz et al.,
2003a; Jantke et al., 2003, 2004; Rostanin et al., 2002), a system that addresses learning in
the area of data mining.

We believe that the integrated conceptual nature of our approach and its coupling with
rigorous mathematical foundations will help to improve e-learning system in a way that
learner-driven learning on demand will be better supported. However, we do not claim
that our methodology is a panacea for all problems related to e-learning. We acknowledge
that not all of the educational discussion in the field has entered our work nor the work of
others, as the technological challenges arising from these discussions have not yet found
adequate answers. In other words, we will continue our research in order to further improve
our approach.

References

Atzeni, P., Gupta, A., and Sarawagi, S. (1998) Design and maintenance of data-intensive web-sites. In Proceeding
EDBT’98, volume 1377 of LNCS, Springer-Verlag, Berlin, pp. 436—450.

Bergstedt, S., Wiegreffe, S., Wittmann, J., and Moéller, D. (2003) Content management systems and e-learning
systems: A symbiosis? In Proceedings ICALT 2003, IEEE Computer Society, pp. 155-159.

Binemann-Zdanowicz, A., Kaschek, R., Schewe, K.-D., and Thalheim, B. (2004) Context-aware web information
systems. In Conceptual Modelling 2004—First Asia-Pacific Conference on Conceptual Modelling, S. Hart-
mann and J. Roddick (eds.), volume 31 of CRPIT, Dunedin, New Zealand. Australian Computer Society,
pp- 37-48.

Binemann-Zdanowicz, A., Schewe, K.-D., and Thalheim, B. (2004) Adaptation to learning styles. In Pro-
ceedings of the IEEE International Conference on Advanced Learning Technologies — ICALT 2004, C.-K.

CONCEPTUAL VIEW 107

Kinshuk, Looi, E. Sutinen, D. G. Sampson, I. Aedo, L. Uden, and E. Kidhkonen (eds.), IEEE Computer Society,
pp. 121-125.

Binemann-Zdanowicz, A., Schulz-Briinken, B., Thalheim, B., and Tschiedel, B. (2003a) Flexible e-payment based
on content and profile in the e-learning system DaMiT. In Proceedings of E-Learn 2003, Phoenix (Arizona),
USA. Association for the Advancement of Computing in Education.

Binemann-Zdanowicz, A., Thalheim, B., and Tschiedel, B. (2003b) Logistics for learning objects. In Proceedings
of eTrain 2003.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M. (2003) Designing Data-Intensive
Web Applications. Morgan Kaufmann, San Francisco.

Conallen, J. (2003). Building Web Applications with UML. Addison-Wesley, Boston.

Feyer, T., Kao, O., Schewe, K.-D., and Thalheim, B. (2000) Design of data-intensive web-based information
services. In Proceedings of the 1st International Conference on Web Information Systems Engineering (WISE
2000), Q. Li, Z. M. Ozsuyoglu, R. Wagner, Y. Kambayashi, and Y. Zhang (eds.), IEEE Computer Society,
pp. 462-467.

Hausser, R. (2001) Foundations of Computational Linguistics. Springer-Verlag, Berlin, Germany.

Hiibscher, R. (2001) What’s in a prerequisite? In Proceedings ICALT 2001, T. Okamoto, R. Hartley, Kinshuk, and
J. P. Klus (eds.), IEEE Computer Society, pp. 365-368.

Jantke, K.-P., Lange, S., Thalheim, B., Tschiedel, B., Grieser, G., and Grigoriev, P. (2004) Learning by doing and
learning when doing: Dovetailing e-learning and decision support with a data mining tutor. In Proceedings of
the 6th International Conference on Enterprise Information Systems, Porto, Portugal.

Jantke, K.-P., Memmel, M., Rostanin, O., Thalheim, B., and Tschiedel, B. (2003) Decision support by learning-
on-demand. In Proceedings DSE 2003, CAISE Workshops, pp. 317-328.

Kaschek, R., Matthews, C., Schewe, K.-D., and Wallace, C. (2003) Analyzing web information systems with the
Abstraction Layer Model and SiteLang. In Proceedings of the Australasian Conference on Information Systems
(ACIS 2003).

Kaschek, R., Schewe, K.-D., Thalheim, B., Kuss, T., and Tschiedel, B. (2004a) Learner typing for electronic
learning systems. In Proceedings of the IEEE International Conference on Advanced Learning Technologies
— ICALT 2004, C.-K. Kinshuk, Looi, E. Sutinen, D. G. Sampson, 1. Aedo, L. Uden, and E. Kéhkonen (eds.),
IEEE Computer Society, pp. 375-379.

Kaschek, R., Schewe, K.-D., Wallace, C., and Matthews, C. (2004b) Story boarding for web information systems.
In Web Information Systems, D. Taniar and W. Rahayu (eds.), IDEA Group.

Kerres, M. (2001) Multimediale und telemediale Lernumgebungen: Konzeption und Entwicklung. Oldenbourg-
Verlag.

Kozen, D. (1997) Kleene algebra with tests. ACM Transactions on Programming Languages and Systems, 19(3),
427-443.

Martinez, M. (2001) Key design considerations for personalized learning on the web. Educational Technology and
Society, 4(1).

Merrill, M. D. (1983) Component display theory. In Instructional-Design Theories and Models: An Overview of
Their Current Status, C. M. Reigeluth, (ed.), Erlbaum, Hillsdale, NJ, pp. 279-333.

Mohan, P. and Brooks, C. (2003) Learning objects on the semantic web. In Proceedings ICALT 2003, IEEE
Computer Society, pp. 195-199.

ONTO-LOGGING Consortium (2002) User modelling issues in the context of knowledge management.
http://wuw.ontologging.com/deliverables.htm.

Qu, C. and Nejdl, W. (2003) Searching SCORM metadata in a RDF-based e-learning P2P network using Xquery
and Query-by-Example. In Proceedings ICALT 2003, IEEE Computer Society, pp. 81-85.

Ravenscroft, A. and Matheson, M. P. (2001). Carpe diem: Models and methodologies for designing engaging and
interactive e-learning discourse. In Proceedings ICALT 2001, T. Okamoto, R. Hartley, Kinshuk, and J. P. Klus
(eds.), IEEE Computer Society, pp. 74—77.

Rostanin, O., Schewe, K.-D., Thalheim, B., and Tretiakov, A. (2004) Managing the data in electronic learning
systems. In Proceedings of the IEEE International Conference on Advanced Learning Technologies — ICALT
2004, C.-K. Kinshuk, Looi, E. Sutinen, D. G. Sampson, I. Aedo, L. Uden, and E. Kédhkonen (eds.), IEEE
Computer Society, pp. 395-399.

108 SCHEWE ET AL.

Rostanin, O., Tschiedel, B., and Thalheim, B. (2002) Szenario-basiertes e-Learning fiir adaptive Inhalt-
spriasentation. In Proceedings LIT 2002, K.-P. Jantke, W. Wittig, and J. Herrmann (eds.), Infix Publishers,
pp. 330-338.

Schewe, K.-D., Kaschek, R., Matthews, C., and Wallace, C. (2002) Modelling web-based banking systems: Story
boarding and user profiling. In Proceedings of eCoMo 2002, H. C. Mayr and W.-J. Van den Heuvel (eds.),
Springer LNCS, Springer-Verlag, Berlin.

Schewe, K.-D. and Thalheim, B. (2001) Modeling interaction and media objects. In Proceedings of 5th Int. Conf.
on Applications of Natural Language to Information Systems (NLDB 2000), E. Métais (ed.), Springer Verlag,
Berlin. LNCS 1959, pp. 313-324.

Schewe, K.-D. and Thalheim, B. (2005) Conceptual modelling of web information systems. Data and Knowledge
Engineering. to appear.

Sessink, O., Beeftink, R., Tramper, J., and Hartog, R. (2003) Author-defined storage in the next generation learning
management systems. In Proceedings ICALT 2003, IEEE Computer Society, pp. 57-61.

Thalheim, B. (2000) Entity-Relationship Modeling: Foundations of Database Technology. Springer-Verlag.

Thalheim, B., Binemann-Zdanowicz, A., and Tschiedel, B. (2003) Content modeling for e-learning services. In
Proceedings of the 7th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2003).

Thalheim, B. and Diisterhoft, A. (2000) The use of metaphorical structures for internet sites. Data & Knowledge
Engineering, 35, 161-180.

Thalheim, B. and Diisterhoft, A. (2001) SiteLang: Conceptual modeling of internet sites. In Conceptual Modeling—
ER 2001, volume 2224 of LNCS, H. S. Kunii, S. Jajodia, and A. Sglvberg (eds.), Springer-Verlag, Berlin,
pp. 179-192.

Thalheim, B. and Diisterhoft, A. (2004) Linguistic based search facilities in snowflake-like database schemes.
Data & Knowledge Engineering, 48, 177-198.

Van Duyne, D. K., Landay, J. A., and Hong, J. I. (2002) The Design of Sites. Addison-Wesley, Boston.

