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Learning Based on Conceptual Distance

YVES KODRATOFF anp GHEORGHE TECUCI

Abstract—In this paper we present a new approach to concept learn-
ing from examples and concept learning by observation, which is based
on an intuitive notion of conceptual distance between examples (con-
cepts) and combines symbolical and numerical methods. Our approach
is supported by the observation that very different examples generalize
to an expression that is very far from each of them, while identical
examples generalize to themselves. Therefore, a generalization of two
examples, as well as the process of obtaining this generalization, rep-
resents indications of the conceptual distance between the examples.
Following this idea we propose some domain independent and intui-
tively justified estimates for the conceptual distance. Usually however,
a set of examples may be characterized by several generalizations, each
suggesting a certain conceptual distance. The minimum of these is taken
as the estimation of the real conceptual distance. Moreover, the cor-
responding generalization is recommended as the one to be made by
the learning system because this generalization has the desirable prop-
erty of reflecting the greatest number of common features of the ex-
amples. We also present a hierarchical conceptual clustering algorithm
which groups objects so that to maximize the cohesiveness (a reciprocal
of the conceptual distance) of the clusters, We further show that con-
ceptual clustering may improve learning from complex examples de-
scribing objects and the relations between them. The idea is that learn-
ing good generalizations of such examples requires matching the most
similar objects which, in turn, requies a clustering of these objects.
Finally we present a methedology of learning hierarchies of prototype
objects which is a step toward automating the construction of knowl-
edge bases for expert systems.

Index Terms—Conceptual clustering, conceptual cohesiveness, con-
ceptual distance, dissimilarity, generalization, knowledge acquisition,
knowledge bases, preferable generalization, prototypes, robotics.

I. INTRODUCTION

ACHINE learning may be defined as any process

by which a computer increases its knowledge and
improves its skills. One of the basic types of learning is
inductive learning, that is, learning by generalizing spe-
cific facts or situations. Inductive learning has received
considerable attention in artificial intelligence [3], [4], [9],
[101, [11], [15]. Two different kinds of inductive learning
are learning from examples and conceptual clustering.

In concept learning from examples, the learning system
is presented with independent instances representing a
certain class, and the task is to induce a general descrip-
tion of the class. The instances can be specific physical
objects, actions. processes, images, etc. Let us suppose
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that they are different cars (CITROEN, RENAULT,
OPEL, etc.). In this case, the system’s task is to learn the
concept of car, represented by what is common to all the
given examples (objects with four wheels, used to trans-
port people, etc.). Having formed such a concept, the sys-
tem will be able to recognize other objects as being or not
being cars, as they have or have not the properties of the
car concept.

In conceptual clustering, the learner is also presented
with a set of examples, but these examples are no longer
said to represent the same class. In this case, the learner
has to solve two problems:

o the aggregation problem of distinguishing classes
(defined as extensionally enumerated sets of objects) into
which the examples can be grouped;

e the characterization problem of inducing an inten-
tional description for each class.

The examples presented to the learner could be, for in-
stance, descriptions of specific cars, ships, airplanes, or
trains, and the system would learn the following con-
cepts:

vehicle

T

acrial-vehicle terrestrial-vehicle acquatic-vehicle

car train

As defined, the characterization problem is very similar
with the problem of learning from examples. Conceptual
clustering processes must address this problem since the
quality of the clustering is dependent on the description
of the clusters (the simplicity of these descriptions, the
map between the descriptions and the clusters they cover,
etc. [12]).

Although nobody is claiming that the aggregation and
characterization problems should be independent, the
present conceptual clustering algorithms [5] first solve the
aggregation problem, and then use the methods of learn-
ing from examples to obtain a description for each cluster.
The so obtained descriptions are further used to estimate
the quality of the clustering and may suggest to search for
another clustering.

In this paper we present a new approach to concept
learning from examples and concept learning by obser-
vation, which is based on a intuitive notion of conceptual
distance [12] between examples (concepts) and combines
symbolical and numerical methods.
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Our approach is supported by the observation that very
different examples generalize to an expression that is very
far from each of them, while identical examples general-
ize to themselves. Therefore, a generalization of two ex-
amples, as well as the process of obtaining this general-
ization, represent indications of the conceptual distance
between the examples. Following this idea, in Section III,
we propose some domain independent and intuitively jus-
tified measures for the conceptual distance.

However, the process of obtaining a generalization of
a set of examples is not a deterministic one. Several gen-
eralizations are possible, and each suggests a certain con-
ceptual distance between them. Therefore, we propose to
estimate the real distance by the minimum of these dis-
tances. Moreover, the corresponding generalization is
recommended as the one to be made by the learning sys-
tem since this generalization has the desirable property of
reflecting the most commonalties between the examples.

In Section IV, we present a conceptual clustering al-
gorithm which is based on the reciprocal of the conceptual
distance, called conceptual cohesiveness [12], and on a
partial ordering defined on conceptual cohesiveness. The
main feature of the conceptual cohesiveness is that it takes
into consideration not only the properties of the individual
objects, but also their relationship to other objects and,
most importantly, their relationship to some predefined
concepts characterizing object collections.

To cluster a set of examples E1, , En, our algo-
rithm first looks for the two examples Ei, Ej for which the
conceptual cohesiveness is maximum. These examples
form the seed of a cluster. A new example Ek is added to
this cluster only if the conceptual cohesiveness of the set
{ Ei, Ej} is not greater than the conceptual cohesiveness
of the set {Ei, Ej, Ek} .

While, in general, only conceptual clustering is based
on learning from examples, in our approach learning from
complex examples is also based on conceptual clustering.
Here by a complex example we mean an example describ-
ing several objects and the relations between them. The
idea is that learning good generalizations of complex ex-
amples requires matching the most similar objects which,
in turn, requires a clustering of these objects. This method
is presented in Section V. For instance, it should be of
use in scene analysis where the recognition of each indi-
vidual scene component and the recognition of the whole
scene are dependent of each other.

We consider that the approach presented in this paper
is also significant to automatic knowledge acquisition for
expert systems and, in Section VI, we present a method-
ology for generating hierarchies of prototype objects.

II. CoNCEPT LEARNING FROM EXAMPLES

Concept learning from examples means forming a gen-
eral description (concept) of a class of objects given a set
of objects (examples) from this class.

We assume that both the examples and the concepts are
described in the same representation language, as con-
junctions of literals. For instance, Fig. 1 represents two
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(infront C1 C2) (infront C2 C3) (infront C3 C4) (infront C4 C5)

(length long C1) (length long C2) (length short C3) (length long C4) (length
short C5)

(car-shape machine C1) (car-shape open-rectng C2) (car-shape sloping-top
C3)

(car-shape open-rectng C4) (car-shape open-rectng C5)

(contains €2 L2) (contains C3 L3) (contains C4 L4) (contains C5 LS5)
(load-shape square L2) (load-shape triangle L3) (load-shape hexagon L4)
(load-shape circle LS5) (arpts-load 3 L2)

(nrpts-load 1 L3) (nrpts-load 1 L4) (nrpts-load 1 L5)

(nr-wheels 2 Cl) (nr-wheels 2 C2) (nr-wheels 2 C3) (nr-wheels 3 C4) (nr-
wheels 2 C5)

T2:

(infront C6 C7) (infront C7 C8) (infront C8 C9)

(length long C6) (length short C7) (length short C8) (length short C9)
(car-shape machine C6) (car-shape U-shape C7) (car-shape open-trapeze C8)
(car-shape closed-rectng C9)

(contains C7 L7) (contains C8 L8) (contains C9 L9)

(load-shape triangle L7) (load-sh: gle L8) (load-shape circle L9)
(nrpts-load 1 L7) (nrpts-load 1 L8) (nrpts-| load 2 L9)

(nr-wheels 2 C6) (nr-wheels 2 C7) (nr-wheels 2 C8) (ar-wheels 2 C9)

)
Fig. 1. The first two trains from Michalski’s train problem.

examples of toy trains. They are taken from the famous
Michalski’s train problem [13], which consists in finding
a common characterization of a set of such trains.

As can be seen in Fig. 1, each train is described as a
conjunction of literals of the form (p al - - - an), where
p is a predicate and al, , an are the arguments of the
predicate. For instance:

(car-shape open-rectng C2)

means that the shape of the car C2 is an open rectangle,
and

(length long C2)

means that the length of C2 is long.

The argument of a predicate, also called term, may be
a constant, a variable, or f(¢1 - - - tn), where fis a func-
tion and ¢1, « - + , tn are terms.

For each variable a domain is defined, containing all
possible values the variable can take. As in [12], we dis-
tinguish among nominal (categorical), linear (quantita-
tive), and structured variables, whose domains are unor-
dered, totally ordered, and graph-oriented sets, re-
spectively. Structured variables represent generalization
hierarchies of related values as, for instance, the one
shown in Fig. 2.

The predicates may be related by theorems as, for in-
stance, the following one:

Vx ¥y ¥z, (contains x y) & (contains y z)
= (contains x z)

We shall use the predicates from Michalski’s train
problem to present our approach. For instance, two sim-
ple examples are shown in Fig. 3.

The first example describes the car Al as having the
shape open rectangle and being short. The second exam-
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(any load shape)

oval

T

circle ellipse

polygon

— T

triangle rectangle hexagon

square

Fig. 2. A generalization hierarchy for the load shapes in Fig. 1.

El: (car-shape open-rectng Al) (length short Al)
E2: (car-shape open-trapeze A2) (length short A2)

Fig. 3. Two simple examples.

ple describes the car A2 as having the shape open trapeze
and being also short.

A generalization of an example is an expression which
‘‘describes’’ a set containing the example. That is, by re-
placing the variables of the generalization by suitable con-
stants, one finds back the example (see precise definition
below). For instance, the following is a generalization of
E1l:

G: (car-shape open-rectng x) (length y x)

It describes a set of open rectangle cars of any length.
One finds back E'1 by replacing “‘x’” by ““Al1’" and “‘y”’
by ‘‘short.”’

A generalization of several examples E1, - -+, En is
an expression which describes a set containing all these
examples. For instance, the following is a generalization
of E1 and E2:

Gl:

It describes a set of short cars of any shape.

A key characteristic of the concept learning from ex-
ample problem is that there is an important structure in-
herent to the language used to represent the concepts. This
structure is based on the relation less-general-than, de-
fined as follows.

Given two generalizations, G1 and G2, one says that
G1 is less-general-than G2 if and only if the set of in-
stances of G1 is included into the set of instances of G2.

Notice however that the above definition is extensional,
based upon the instance sets that the generalizations rep-
resent. In order for the less-general-than relation to be
practically computable by a computer program, it must be
possible to determine whether G 1 is less-general-than G2
by examining the descriptions of G1 and G2, without
computing the (possibly infinite) sets of instances that they
match. In our approach, this computational definition is
based on the notion of substitution, as defined in the fol-
lowing.

A substitution has the following form:

(car-shape z x) (Iength short x)

o= (x1<1tl,- - ,xn<m)

where each xi (i = 1, - - - , n) is a variable and each #i
(i=1,-+,n)isaterm.
If ‘1>’ is a literal then ‘‘o © [’ is the literal obtained

by substituting each ‘‘xi’’ from “‘I°” with “‘ri.”’

899

Using substitutions one may compare the generality of
logical formulas [7].

One says that the term 1 is less general than the term
12 if and only if there exist ¢1’, ¢2', and a substitution ¢
such that:

11" =11
2" =12
got2 =1l

That is, one uses the theorems and the properties of the
representation language to rewrite the terms so that to be-
come directly comparable.

Let us consider, for instance, the following terms:

t1 = VOLUM-CUBOID (55 7)
t2 = VOLUM-CUBOID (x y x)

Using the property of commutativity of the arguments
of the function VOLUM-CUBOID one may rewrite t2 as:

t2' = VOLUM-CUBOID (x X y)
Next one finds the substitution
c=(x+<5y<T)

such that ¢ © 2’ = ¢1. Therefore, one may say that 71 is
less general than ¢2.

The literal 1 = (pl 11 - - - tln) is less general than
the literal I2 = (p2 t21 - - - t2n) if and only if there
exist [1’, {2', and o such that:

n=1n
12 =12
gol2' =11

Let us now consider two conjunctive formula

X=X1&X2& -+ &Xn
Y=Y1&Y2& - &Ym

where Xi (i =1, - - -
literals.

X is less general than Y if and only if there exist X',
Y’, and o such that:

,nyand ¥j(j=1, -+, m)are

X=X X=X1"&X2'& -+ &Xp'

Y=Y Y=YI"&Y2 & -&Yq

vi, 1 <=i=<gqg3j, 1=<j= p suchthat
go Y = Xj'.

Otherwise stated, one transforms the formula X and Y,
using the theorems and the properties of the representa-
tion language, so that for each literal from Y’ there exists
a literal in X’ which is less general.

For instance

E1: (car-shape open-rectng C1)
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is less general than
G: (car-shape z x) (length y x)

Indeed, one may use the theorem that any car has a
length

vv 3u (length u v) = TRUE
and may rewrite E'1 as
E1l:

Now, there exists the substitution

(car-shape open-rectng C1) (length u C1).

o = (z < open-rectng, x < Cl,y < u)

such that ‘6 © G = E1”’. Therefore, E1 is less general
than G.

Let us consider again the examples in Fig. 3. Some of
their generalizations are the following ones:

G1: (car-shape z x) (Iength y x)
G2: (car-shape z x) (Iength short x)
G3: (car-shape z x) (length y 1)
G4: (car-shape x y)

GS: (length short x)

G6: (length x y)

A leamning system will always have the problem of
choosing among the competing generalizations. We de-
fine the notion of preferable generalization as being the
generalization which is less general than all the other gen-
eralizations.

In our case, the preferable generalization is G2 since it
is less general than all the other generalizations. For in-
stance, G2 is less general than G1 because there is the
substitution ¢ = (y < short) such that 6 © G1 = G2.

The notion of preferable generalization is relative to the
knowledge about the learning universe and cannot be con-
sidered absolute. New knowledge may lead to an im-
provement. For instance, let us consider that we have ac-
quired new knowledge about car shapes. Suppose that this
knowledge is expressed by the hierarchy in Fig. 4.

In this case

G7: (car-shape open-top x) (length short x)

is also a generalization of E1 and E2. Since G7 is less
general than G2 (there is 0 = (z < open-top) such that
‘00 G2 = GT7’), G7 is less general than all the other
generalizations. Therefore G7 is the preferable general-
ization in the new context.

Given a set of generalizations, it is most probable that
there is no generalization that is the least general. For
instance, the set { G1, G3, G4, G5, G6} does not con-
tain a least general expression.

Given two expressions G 1 and G2, if neither G1 is less
general than G2 nor G2 less general than G1, then G1
and G2 are said to be incomparable from a generalization
point of view.

In a given learning situation, there are many general-
izations which are incomparable, and the main difficulty

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

*c
(any car shape)

machine open-top close-top
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-trapeze

open-
-rectng

slopping-

U-shapeg db1-open-
- -top

ellipse ©10sed- jagged-
rectng -rectn

8 -top
Fig. 4. A generalization hierarchy for the shapes of the cars in Fig. 1.

of learning is to choose the right one [6]. Therefore, we
have to look for another, more relaxed, definition of the
preferable generalization.

Let us notice that, if Gi is the preferable among G1,
- - -, Gn, then the set of instances of Gi is included into
the set of instances of each of these generalizations. It
follows that the number of instances of Gi is less than the
number of instances of any other generalization. Based on
this observation we may compare two generalizations G 1
and G2 even if they are incomparable from a generaliza-
tion point of view. We shall say that G1 is preferable if
the number of instances of G1 is less than the number of
instances of G2.

But this definition is still unsatisfactory for the simple
reason that learning is not an isolated aim. One is learning
in a given universe, with a well-defined goal in that uni-
verse. As a consequence, a generalization has also to point
to that essential common properties of the examples.
Therefore, a good generalization is not one which repre-
sents many of the properties common to the examples, but
that one which represents many of the important proper-
ties common to the examples.

Let us consider, for instance, the case of a robot which
learns concepts from examples representing physical ob-
jects. Each object is described by specifying the actions
which could be performed on it, the relations which could
be established between this object and other objects, the
shape of the object, its color, etc. Although all these prop-
erties are relevant for a robot their relative importance
depends on robot goals. If the robot intends to use the
learned concepts for action planning, then the action and
relation properties are to be considered more important
than the color, for instance. On the other hand, if the ro-
bot intends to use the learned concepts for recognizing
objects, then the color property should be considered more
important. This problem is treated in detail in Section VI.

In our approach, the relative importance of the predi-
cates must be defined by the teacher. One way to do it is
to associate a weight to each predicate. Based on the
weights of the predicates we could estimate the relevance
(value) of a generalization as the sum of the weights of
the predicates included into the generalization. We may
therefore consider that the preferable generalization is the
one which maximizes the relevance and minimizes the
number of instances.

We may now informally define the preferable general-
ization of the examples E1, E2, - - - , En, as follows:

e if there is a generalization Gi which is less-general-
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than the other generalizations of the examples then Gi is
the preferable generalization;

e if Gil, -+ , Gim, are all the incomparable gener-
alizations of the examples, then consider the preferable
generalization the one which is the most relevant (con-
tains the most important predicates) and has the least
number of instances.

In the following section we shall propose a more com-
putational definition of the preferable generalization, def-
inition based on domain-independent and intuitively jus-
tified heuristics.

III. CoNceEPTUAL DISTANCE AND CONCEPTUAL
COHESIVENESS

A. The General Approach
Given two descriptions, we could notice similarities and
dissimilarities. For instance, the descriptions:

E1l:
E2.

(car-shape open-rectng B1)
(car-shape U-shaped B2)

are similar because both are characterized by the predicate
car-shape and each car-shape is open-top (see Fig. 4), but
the first shape is open-rectng, while the second one is U-
shaped.

If we could estimate the similarity S(E1, E2) and the
dissimilarity D(E1, E2) between the descriptions E'1 and
E2, then we could estimate the conceptual distance be-
tween E'1 and E2 by a function of S and D. This function
would quantify the contribution of S and D to the concep-
tual distance.

Since a generalization of two examples is able to reveal
subtle commonalities between these examples it seems to
be a suitable means of estimating their conceptual dis-
tance. Indeed, let us notice that very different examples
generalize to a general expression that is very far from
each of them, while identical examples generalize to
themselves. Moreover, we want to take into account that
the fewer changes are made to the examples in order to
obtain a generalization, the greater the similarities and the
less the dissimilarities are.

Here we shall propose an estimation of the conceptual
distance which is based on the learning algorithm devel-
oped at LRI [7]. This algorithm uses the principle of
structural matching: the examples are successively trans-
formed until they acquire approximately the same form.
Then the generalization is obtained by retaining only the
common features.

To illustrate this algorithm let us consider the following
two examples:

E1: (car-shape open-rectng C1) (contains C1 L1)

(car-shape open-trapeze C3)
E2: (car-shape U-shaped C2) (length short C2)

The first example represents two cars, an open rectan-
gle one containing an object and an open trapeze one. The
second example represents a short U-shaped car (see Fig.
4).

The algorithm first rewrites the examples revealing their
common features:

E1: (car-shape open-top X 1) (contains X1 L1)
(car-shape open-trapeze C3)
X1<C1)

E2: (car-shape open-top X 1) (length short X 1)
X1<C2)

Next, it will use the theorems of the representation lan-
guage in order to reveal in one example features exhibited
by the other. Such a theorem expresses, for instance, the
fact that any object has a length:

vz 3¢ (length ¢ z) = TRUE

Using this theorem one rewrites the two examples as
follows:

E1: (car-shape open-top X1) (length Y1 X1) (con-
tains X1 L1)
(car-shape open-trapeze C3)

(X1<C1, Y1+«

(car-shape open-top X1) (length Y1 X1)
(X1<C2, Y1+ short)

E2:

If one example exhibits a certain feature more times
than the other, one uses the idempotency of the AND op-
erator to make the feature appear the same number of
times:

(car-shape open-top X1)
= (car-shape open-top X1) &(car-shape open-top X1)

Therefore, the two expressions are farther rewritten as
follows:

E1: (car-shape open-top X1) (length Y1 X1) (con-
tains X1 L1)
(car-shape open-top X2)
(X1+<Cl1, Y1+1t, X2+ C3)
E2: (car-shape open-top X1) (length Y1 X1)

(car-shape open-top X2)
(X1<C2, Y1+ short, X2+ C2)

When no other common features may be revealed, one
simply drops the differences between the two expessions
and obtains the generalization of the initial examples:

G(E1,E2): (car-shape open-top X1) (length Y1 X1)
(car-shape open-top X2)

(may-be-the-same X1 X2)

Let us notice that the operations made in order to obtain
a structural matching and a generalization of the examples
are indications of similarities and dissimilarities between
these examples.

The predicates of E1, E2, and G(E1, E2) could be
classified in four categories (thus obtaining four lists of
predicates), as follows:
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Common: Predicates from G (E'1, E2) which were ini-
tially present in E1 and E2:

{ (car-shape open-top X1) }.

Theorems: Predicates introduced in G(E1, E2) by
using the theorems of the representation language:

{ (length Y1 X1) }.

Idempotency: Predicates introduced in G (E1, E2) by
using the idempotency of the AND operator:

{ (car-shape open-top X2) }.

Dropped: Predicates dropped from E1 and E2, in or-
der to obtain G (E1, E2):

{ (contains X1 L1) }.

The general intuition is that each such type has a spe-
cific influence to the estimation of the similarities and dis-
similarities between the examples.

In the following sections we shall propose and justify
measures for each type of predicates.

B. Common Predicates
Let us consider the following four examples:

E1: (car-shape open-rectng C1)
E?2: (car-shape U-shaped C2)
E3: (car-shape open-rectng C3)
E4: (car-shape ellipse C4)

Since each of these four descriptions is characterized
by the same predicate, the conceptual distance between
them is exclusively determined by the distance between
their arguments.

Intuitively:

distance (E1, E3) < distance(E1, E2)
< distance(E1, E4)

Let us also consider the following generalizations (see
Fig. 4):

G(E1,E3): (car-shape open-rectng X1)
G(E1,E2): (car-shape open-top X2)
G(E1,E4): (car-shape *c X3)

Let us notice that open-rectng, open-top, and *c are all
values from the structured domain in Fig. 4, and that open-
rectng is less general than open-top which in its turn is
less general than *c. While open-rectng is an instance,
open-top is a generalization with 4 instances and *c is a
generalization with 9 instances.

We could define the degree of generality of an argu-
ment, as the ratio of the number of argument’s instances
to the total number of instances from argument’s domain,
that is:

number of instances of ‘“‘a”’
number of instances of the domain of “‘a””’

gla) =

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

For example:
g(open-rectng) = 0. g(open-top) = 0.44 g(*c) = 1.

This definition applies also to the so-called linear
(quantitative) variables [12].

Let us notice that there is no dissimilarity between E'1
and E3. Indeed, C1 and C3 are just different names for
the same entity (i.e., the car) and X1, in the expression
G (E1, E3) = (car-shape open-rectng X1), is just an-
other name for the car. X1 denotes a definite object and,
therefore, g(X1) = 0.

Intuitively, the more similar two descriptions contain-
ing only common predicates are, the less general are the
arguments of their generalizations. Also, the more dis-
similar two such descriptions are, the more general are
these arguments.

All the arguments of a predicate being a priori of the
same importance, one should propose an estimation for
the similarity (dissimilarity), between two examples E1
and E2, by a function of the mean degree of generality of
the arguments of the generalization G (E1, E2).

Let us now consider the following three examples:

ES: (color red C5)
E6: (color blue C6)
E7: (size big C7)

and the generalization:
G(ES,E6): (color *d X8)

It is quite obvious that ES is more similar to E6 than
to E7, in spite of the fact that the arguments of G are
variables. The simple fact that E5 and E6 are character-
ized by the same predicate makes them similar. There-
fore, the similarity estimation function should also indi-
cate a certain similarity between two examples even when
all the arguments of G are variables, but both examples
are characterized by the same predicate.

To sum up, let us consider two examples

(Pala2 - --an) & -+ -
Pbib2---bn)& ---

E1l:
E2:

and their generalization

G(ELE2): (Pcl2:--"cen& -~

Also let g(ci) be the generality degree of the argument
ci.

Then we propose to estimate the contribution of P to
the dissimilarity and similarity between E 1 and E2 by the
following functions on the degree of generality of the ar-
guments of P:

D(EL, E2, P) = 0.5(2 g(ci))/n
S(E1, E2,P) = 1 — D(E1, E2, P).

That is, we take the total contribution of a predicate P
to the conceptual distance between E1 and E2 as being
equal to 1, and we distribute it between similarity and
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dissimilarity in accordance with the generality degree of
its arguments.

C. Dropped Predicates
Let us consider two examples and their generalization:

E1: (car-shape open-rectng C1) & (contains C1 L1)
E2: (car-shape U-shaped C2)
G(E1,E2): (car-shape open-top X1)

In order to obtain a generalization of E1 and E2 one
has to drop the predicate contains because it represents a
feature of E 1 which has nothing in common with any fea-
ture of E2. Therefore, this predicate is an indication of
dissimilarity between the two examples.

Therefore we propose to estimate the contribution of a
dropped predicate P to the estimation of the dissimilarity
and similarity between E'1 and E2 as follows:

D(E1,E2,P) =1
S(E1, E2,P) = 1 — D(E1, E2, P) = 0.

D. Predicates Introduced by Idempotence

We consider that the necessity of using idempotency of
the logical ‘‘AND’’ (for computing a generalization of
two descriptions) is an indication of dissimilarity. But this
dissimilarity has to be considered less than in the case of
dropping predicates. Indeed, the predicate involved is
present in both descriptions (that is, both descriptions have
the property expressed by the predicate) but a different
number of times.

Let us consider the following examples:

E1 = (length short C1)
E2 = (length short C2) (length short C3)
E3 = (length short C4) (length long C5).

We could obtain the following generalizations (by ap-
plying idempotency in the first example):

G(E1, E2) = (length short X1) (length short X2)
G(E1, E3) = (length short X3) (length *I X4)

Intuitively, one sees that distance(E1, E2) < dis-
tance (E1, E3).

G(E1, E2) and G (E1, E3) differ only by the predi-
cate which was introduced by idempotency. The only sig-
nificant dissimilarity between (length short X2) and
(length *I X4) consists in the generality degree of the first
argument: g(short) = 0, g(*/) = 1.

As in the case of the common predicates, we could es-
timate the dissimilarity, due to a predicate introduced by
idempotency, by the mean of the degree of generality of
its arguments.

For intuitive, but also for formal reasons, we cannot
accept any contribution of idempotency to the similarity
estimation. Indeed, if idempotency would contribute to
similarity estimation, then the similarity of two descrip-
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tions would be undefined and arbitrary since idempotency
can be applied any number of times.

Therefore, the contribution to the estimation of the dis-
similarity and similarity between E1 and E2 of the pred-
icate P, introduced in G (E1, E2) by idempotency, is
taken as follows:

D(E1, E2, P) = 0.5(2 g(ci))/n
S(E1, E2,P) = 0.

The generalization algorithm will always prefer idem-
potency to dropping, but will also try to use idempotency
as few times as possible.

E. Predicates Introduced by Theorems
In principle, these predicates should be treated as the
common predicates. Let us consider, for instance, the ex-
amples:
E1l:
E2:

(on A B)
(near C D).

We may use the theorem “‘vx Vy, (onxy) — (nearx
y)’’ and rewrite the first example as:

E1l: (on A B) (near A B).

In this way we have revealed a common feature of E'1
and E2: both represent two objects which are near one
another.

However, we must take care avoiding counting several
times the contribution of a predicate to the similarity and
dissimilarity estimation, as shown by the following ex-
ample.

Let us consider, for instance, the examples

El: (onAB)
E2: (on CD)

and their rewritten form

E1l: (on A B) (near A B)
E2: (on C D) (near C D).

In this case we should consider the on predicate as the
only predicate common to the examples. Adding near
would almost mean counting several times the on predi-
cate.

F. Relative Importance of the Predicates

A system learning concepts from examples is supposed
to have its own goals that are intended to be achieved by
using the learned concepts. Since these goals are also
known by the teacher supplying the examples, it is rea-
sonable to suppose that the examples specify only the
properties relevant to the system’s goals. Even in such a
case however some properties may be regarded as more
important than others.

We assume that the relative importance of the proper-
ties is given by the teacher in the form of a weight asso-
ciated to each predicate. Therefore, the previously esti-
mated contributions of a predicate, to the similarity and
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the dissimilarity of two descriptions will be multiplied by
the weight of the predicate. For instance, if P is a com-
mon predicate with the weight w, then its contribution to
the dissimilarity and similarity estimation will be taken
as:

D(E1, E2, P) = 0.50(2 g(ci))/n
S(E1,E2, P) =1 — D(E1, E2, P).

G. Estimation of Conceptual Distance and Conceptual
Cohesiveness

Let us consider two examples E1, E2, and one of their
generalizations G (E1, E2). As shown in the previous
sections, one may estimate the contribution to similarity
and dissimilarity of each involved predicate. By adding
these estimations, one obtains the total estimation of sim-
ilarity S(E'1, E2, G) and the total estimation of dissim-
ilarity D(E1, E2, G). These estimations depend of
course on the generalization G (E1, E2). Another gen-
eralization G’ (E1, E2) would produce different estima-
tions D' (E1, E2, G' )yand §'(E1, E2, G').

Having estimated the similarity and the dissimilarity
between E'1 and E2 (corresponding to G (E1, E2)), one
is able to estimate the conceptual distance between E1
and E2 (corresponding to G ), as a function of D and S.
Hereafter we shall consider the following distance func-
tion:

f(E1, E2, G) = D(E1, E2, G)/S(E1, E2, G).

Using G'(E'1, E2) instead of G (E1, E2), one obtains
another estimation of the conceptual distance between E 1
and E2:

f(E1,E2, G') = D(E1, E2, G')/S(E1, E2, G').

We take, as the conceptual distance between E1 and
E2, the minimum of f (E'1, E2, G ) over all possible gen-
eralizations of £1 and E2:

conceptual-distance (E'1, E2)

= min {f(E1, E2, G(EL, E2))}.
G(E1,E2)

Moreover, the generalization for which fis minimum is
recommended as the concept to be learned from E1 and
E?2 since this generalization has the desirable property of
revealing the greatest number of common features be-
tween the examples and of being the least general among
the generalizations revealing the same amount of common
features.

Since the definition of the conceptual distance is based
on the generalizations of the examples, this definition ap-
plies for any number of examples.

Let us consider n examples E1, E2, - -+ , En and
G (E1,E2, - - -, En), one of their generalizations. Based
on this generalization one can compute the four lists:

CM: Predicates from G (E1, - -+ , En) which were
initially present in E1, * -+ , En.
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TH: Predicates from G (E1, * - - , En) which were in-
troduced in at least one example, by using the theorems
of the representation language (but not idempotency).

ID: Predicates from G (E1, - - -, En) which were in-
troduced in at least one example, by using the idempo-
tency of the AND operator;

DR: Predicates dropped from E'1, - - - , En in order to
obtain G(E1, - - -, En).

Further on, using the above four lists, one can estimate
the similarity S(E1, - -- , En, G), the dissimilarity
D(E1, - -+, En, G), and the conceptual distance f(E1,
+++, En, G). The minimum of ftaken over all possible
generalizations of E'1, - - -, En is the conceptual distance
between E1, - - - |, En:

conceptual-distance (E'1, - - - , En)
f(E1, -+, En, G).

= min
G(E1,- - En)

The reciprocal of the conceptual distance is called the
conceptual cohesiveness of the set {E1, - - - , En}. The
more similar and less dissimilar are the examples, the
greater is their conceptual cohesiveness.

In the next section we shall present a hierarchical clus-
tering algorithm based on the above notion of conceptual
cohesiveness.

IV. CLUSTERING BY GENERALIZING

Conceptual clustering was introduced by Michalski and
Stepp [12] as an extension of processes of numerical tax-
onomy (a collection of methods used to form classifica-
tion schemes over data sets) [19]. The main quality of the
conceptual clustering is that it is able to capture the ‘‘Ges-
talt properties’” of object clusters, that is, properties that
characterize a cluster as a whole and are not derivable
from properties of individual entities.

To illustrate this idea, let us consider the example taken
from [12] shown in Fig. 5.

A person considering this figure would typically de-
scribe the observed points as representing two diamonds.
Thus, the points A and B, although closer to each other
than to other points, are placed into different clusters.

CLUSTER/2 {12] is a conceptual clustering algorithm
able to make such classifications. In this section we pre-
sent another clustering algorithm which is based on the
conceptual cohesiveness defined in the previous section.

The goal of our clustering algorithm is to group the ex-
amples in such a way so that to maximize the conceptual
cohesiveness of the clusters.

Our algorithm is based on the following observations:
if {E1, E2, - - -, En} is a cluster with high conceptual
cohesiveness and {Ei, - - -, Ek} is a subset of this clus-
ter, then the conceptual cohesiveness of {Ei, - - - , Ek}
is a good approximation of the conceptual cohesiveness
of {E1, E2, - - - , En}. Let us now suppose that we add
a new example Ea to this cluster. If the conceptual co-
hesiveness does not decrease significantly, then Ea be-
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Fig. 5. An illustration of conceptual clustering.

longs to the same concept as {E1, E2, * - - , En }. Oth-
erwise, {E1, E2, - - - , En} and Ea belong to different
concepts.

To illustrate this idea, let us consider that each example
represents either a man or a woman. The conceptual co-
hesiveness of each subset of women is approximately the
same with the conceptual cohesiveness of the set of all
women. However, adding a man to such a set would sig-
nificantly decrease the conceptual cohesiveness of the set.

To make this approach operational, one has to be able
to determine when a conceptual cohesiveness decreases
significantly. This is analogous to the definition of what
we call resolution, a measure that indicates the minimum
distance that has to exist between two elements to be per-
ceived as distinct. Our claim is that, in a given domain,
one could experimentally determine the resolution by
measuring the distances between concepts thought as dis-
tinct. We propose to express this resolution as a threshold
n, where 0 < p =< 1, and to state that the conceptual
cohesiveness of two sets S1 and S2 are different if and
only if

o cohesiveness(S1) is less than p*cohesiveness (S2)
or

e cohesiveness (S2) is less than p*cohesiveness(S1).

Let {E1, - - -, Et} be the examples to be clustered.
The clustering algorithm first determines the pair of ex-
amples { Ep, Eq} for which the conceptual cohesiveness
is maximum and takes it as the seed of a cluster. A new
example is introduced into this cluster only if it does not
decrease the cohesiveness of the cluster below the cohe-
siveness of { Ep, Eq}.

Once a cluster is completed, it replaces, in the set of
examples, all the examples it contains, and the process is
restarted with the new examples.

In greater detail the clustering algorithm is the follow-
ing one:

Step 1: Ask for the resolution of the application do-
main.

The resolution of the application domain is defined by
the user as a threshold g, where 0 < p < 1.

Given two sets S1 and §2, cohesiveness(S1) < co-
hesiveness (S2) if and only if cohesiveness(S1) is less
than p*cohesiveness (52).

If neither “‘c(S1) < ¢(82) nor ““c(S2) < c(S1)”
we say that ¢(S1) and c(S2) are incomparable, were by
¢(Si) we denoted the cohesiveness of Si.

Step 2: Compute the conceptual cohesiveness of each
pair of examples.

Let E = {E1, - - - , En} be the set of examples.

For each pair { Ep, Eq} compute its cohesiveness by
using the generalizations G (Ep, Eq) and the correspond-

ing quadruples
L(Ep, Eq) = (CO(Ep, Eq), TH(Ep, Eq),
ID(Ep, Eq), DR(Ep, Eq)),

as presented in Section IIIL.

Step 3: Choose a seed of the clustering.

Determine the pair { Ep, Eq} for which c(Ep, Eq) is
maximum. If several such pairs exist, choose one of them.

Let { Ep, Eq} be the chosen pair. It is called the seed
of the clustering.

G (Ep, Eq) is one of the most relevant concepts among
those represented by pairs of examples.

Let M = {Ep, Eq}.

We shall discover a first cluster by introducing in M
other elements from E.

Step 4: Determine the examples which could be mem-
bers of the cluster represented by the chosen seed.

That is, determine the set:

T = {Ek

“‘c(FEp, Eq) and c(FEk, Ep) are incomparable’’
“c(Ep, Eq) and c(Ek, Eq) are incomparable’’ }

Let us suppose that c(Ek, Ep) < c(Ep, Eq). In this
case also c(Ep, Eq, Ek) < c(Ep, Eq) so Ek may not be
member of the concept represented by { Ep, Eq}.

Step 5: Introduce examples into the cluster.

For each Ek from T, if c(Ep, Eq) and c(M, Ek) are
incomparable, then introduce Ek into M.

Initially M = {Ep, Eq}. Therefore, c(M, Ek) means

c(Ep, Eq, Ek).
IfM = {Ep, Eq, - - -, Et} then c(M, Ek) means c(Ep,
Eq, - - - , Et, EK).

At the end of this step one has discovered the cluster
represented by the seed { Ep, Eq}:

M={Ep,Eq, ,Es}.

Step 6: Replace the examples contained in the cluster
with the cluster.

Remove from the set of examples E, the elements of
the discovered cluster M = {Ep, Eq, + - - , Es}.

Consider M as a complex example Em and introduce it
into E.

Thatis, E « (E — M) U {Em}.

If Ei is an initial example and Em = {Ep, Eq, - - - ,
Es}, is a complex example, then we consider that

G (Ei, Em) = G (Ei, Ep, Eq, - - - , Es)
and
c(Ei, Em) = c(Ei, Ep, Eq, * - - , Es).

If Ms is a cluster containing the complex example Em
then Ms represents a super-concept of the concept Em.

Step 7. Rerun the algorithm.

Repeat from step 1 with the new set of examples until
E is reduced to one element ( Ek) or to two elements ( Ek1,
Ek2). Ek [respectively G (Ek1, Ek2)] is the concept rep-
resenting all the examples.
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The presented algorithm is only a basic one. Several
improvements are obvious. For instance, let us consider
again step 2. If E = {Eil, --- , Eit} U {Em}, Em
being the last complex example formed, then we have to
consider only the pairs { Eik, Em} since the other pairs
have already been considered in the previous step 1.

One could also modify step 3 of the above algorithm by
working with several seeds simultaneously. Indeed, in-
stead of choosing one seed (among the incomparable ones)
and to determine the corresponding cluster, one could
consider all the competing seeds at the same time and de-
termine simultaneously the corresponding clusters.

Let us also notice that although the discovered clusters
are disjoint with respect to the clustered examples (or one
is included into the other) their descriptions are not guar-
anteed to be disjoint. That is, they may have common
instances.

Since an example of using this algorithm is presented
in Section VI, here we will only make clear its differences
with CLUSTER/2 [12]. Both these algorithms are able to
discover hierarchies of concepts and each concept is rep-
resented as a conjunction of predicates. Even more, they
are both based on a notion of seed. However, in CLUS-
TER/2 a seed is an example, while in our algorithm a seed
is represented by a pair of examples.

CLUSTER/2 requires as input the number of clusters
to be determined. The analog in our algorithm is the *‘res-
olution.”” CLUSTER/2 may successively consider differ-
ent numbers, until it finds the right one. Similarly, our
algorithm may do experiences with different resolutions.

Another difference between these algorithms is that
CLUSTER?/2 is looking for nonoverlapping concepts that
optimize pre-defined criteria, while our algorithm is look-
ing for the most relevant concepts (as defined in Section
IIT), be these overlapping or not.

Finally, we may contrast the presented algorithm with
the other clustering algorithm developed in our team [1].
While both algorithms combines symbolical and numeri-
cal methods, the presented algorithm is more symbol-
ically oriented while the other one relies more on the nu-
merical approach. The two approaches complement each
other in a natural way. While the clustering algorithm pre-
sented in this paper tends to discover more relevant con-
cepts, it also requies more processing resources.

V. GENERALIZING BY CLUSTERING

In this section we present an interesting relation which
exists between generalization and clustering, in our ap-
proach.

Recall, from the previous section, that our clustering
algorithm uses generalizations in order to cluster. We shall
show that computing good generalizations of complex ex-
amples requires in turn a clustering phase.

By complex examples we mean examples containing
objects. For instance, the examples in Fig. 1 contain car
and load objects. The description of an object ““O,”’ from
such an example, consists of all the predicates containing
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‘O’ as an argument. For instance, the description of the
first car of the first train is the following one.

C1: (Car-shape machine C1) (length long C1) (in-
front C1 C2) (nr-wheels 2 C1).

The description of the load in the second car is:

L2: (Contains C2 L2) (load-shape square L2) (nrpts-
load 3 L2).

One may easily notice that the description of a train is
the conjunct of the descriptions of the objects it contains,
except that, in the latter, some predicates are duplicated.
For instance, (infront C1 C2) appears both in the de-
scription of C'1 and in that of C2.

Provided that the two trains in Fig. 1 are examples of
a general train concept, the objects from these examples
are instances of the objects from the general train descrip-
tion. Therefore, one way to determine the general train
concept is to match and generalize the descriptions of the
objects from the examples.

Our claim is that for computing good generalizations of
complex examples one should match the most similar ob-
Jjects.

We shall illustrate this generalization strategy by apply-
ing it to compute a generalization of the two trains in Fig.

First of all we extract from each of the two train ex-
amples the descriptions of the objects. We find 9 objects
(5 cars and 4 loads) in the first example and 7 objects (4
cars and 3 loads) in the second one.

Next we look for the two objects (one from E1 and the
other from E2) for which the conceptual distance is min-
imum. These objects will be matched, that is, they are
supposed to represent the same object in the generaliza-
tion of E'1 and E2. This matching will of course influence
the following matchings. For instance, if two cars Ci and
Cj are matched, and are represented in the generalization
by X1, then the loads contained into these cars (Li and
respectively Lj) become more similar to each other. This
is represented by replacing, in the descriptions of Li and
Lj, the predicates (contains Ci Li) and (contains Cj Lj)
by (contains X1 Li) and (contains X1 Lj ), respectively.

Having established the matching between the most sim-
ilar objects, we look for the other two objects which are
the most similar. We continue this way, matching each
object from E1 with an object from E2 (using idempo-
tency, if needed).

We find the generalization of E1 and E2 as the union
of the generalizations of the corresponding objects (elim-
inating of course the identical predicates):

(car-shape machine X 1) (length long X 1) (infront X1
X5) (nr-wheels 2 X1)

(car-shape * X2) (length short X2) (contains X2 Y1)
(infront X2 X4)

(infront * X2) (nr-wheels 2 X2) (load-shape triangle
Y1) (nrpts-load 1 Y1)

(car-shape * X3) (length short X3) (contains X3 L2)
(infront X4 X3)
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(nr-wheels 2 X3) (load-shape circle Y2) (nrpts-load *
Y2)

(car-shape open-top X4) (length * X4) (contains X4
Y3) (nr-wheels * X4)

(load-shape polygon Y3) (nrpts-load 1 Y3)

(car-shape open-top X5) (length * X35) (contains X5
Y4) (infront X5 *)

(nr-wheels 2 X5) (load-shape polygon Y4) (nrpts-load
* Y4)

This description represents a type of train having the
following features:

e The first car is a two wheel machine. It is followed
by a two wheel open car containing polygons.

e The last car is a two wheel short one, containing cir-
cles. It is preceded by an open car containing one polygon
which, in its turn, is proceeded by a two wheel short car
containing a triangle.

When there are more than two examples to generalize,
one needs to cluster the objects and to match objects be-
longing to the same cluster.

The main advantage of this approach is that it reduces
a process of finding a generalization of complex descrip-
tions to several processes of finding generalizations of
much simpler descriptions.

The clustering of the objects may raise, however, com-
plex combinatorial problems. In such a case, one may use
heuristics (or a very simple clustering algorithm) to limit
the objects to be clustered. For instance, it should be easy
to establish that one must try to match cars with cars and
loads with loads. Moreover, one does not need to cluster
all the examples, but only to find out one cluster contain-
ing an object from each example.

VI. AcCQUIRING OBJECT KNOWLEDGE

In this section we shall illustrate the relevance of our
learning approach to the automation of knowledge base
construction for expert systems.

A commonly used method of representing knowledge
in artificial intelligence systems is to use prototypes [2],
(81, [14], [16]. Each prototype represents a class of ob-
jects which is relevant for the system’s application do-
main. The prototype is a parameterized representation of
the properties common to the objects in the class. These
prototypes are ordered in a class-subclass hierarchy in
which each prototype inherits the properties of its super-
class prototypes. The main feature of such a representa-
tion is that knowledge is organized arcund conceptual en-
tities, in a memory efficient manner.

Therefore, automated construction of hierarchies of
prototypes is an attempt towards automated construction
of knowledge bases for expert systems.

The clustering algorithm presented in Section IV is able
to discover a hierarchy of concepts characterizing a set of
examples. The only thing which remains to be done, for
building a hierarchy of prototypes, is to fill up this struc-
ture, by computing a description for each concept (node

in the tree). Each such description has to be in terms of
its ancestors in the tree, inheriting and particularizing their
descriptions.

We shall illustrate this problem in the robot world [17]
presented in Fig. 6. It consists of mechanical parts to be
used in assembling tasks.

The robot is told the description of each part (AXLE]1,
AXLE2, WHEELL, - - -) and is asked to learn the gen-
eral concepts represented by these examples. Such con-
cepts are, for instance, axle, wheel, graspable-object, etc.
The goal is to use the learned concepts in planning assem-
bling tasks (for instance, planning the assembly of a car).

For instance, the following is the description of
AXLEL:

(RELATION ATTACHED R1) (RELATION AT-
TACHED R3) (RELATION THRU R2)

(ACTION GRASP R2) (ACTION MOVE R2) (AC-
TION INSERT R1)

(ACTION INSERT R3) (POSITION P3) (GRASPING
G?) (APPROACHING L2)

(SUBPART SOLID CYLINDER(S 1) R1) (SUBPART
SOLID CYLINDER(20 4) R2)

(SUBPART SOLID CYLINDER(S 1) R3) (ALIGNED
R1 R2 R3)

The symbols R1, R2, and R3 are the names of AXLET’s
subparts. P2, G2, L2, are constants representing spatial
positions. R1 and R3 could be in the relation AT-
TACHED with other entities (ATTACHED to a WHEEL,
for instance) and R2 could be in the relation THRU with
other entities (THRU a CARBODY HOLE, for instance).
The actions which could be performed on AXLE] are
GRASP (by grasping R2), MOVE (by moving the
grasped subpart), and INSERT (by inserting R1). AXLEI
is also characterized by a position (P2), a grasping point
(G2) and a corresponding approaching point (L2). The
three subparts R1, R2, R3, are solid cylinders, two of
them (R1 and R3) having the same dimensions (height
and diameter). The parts are aligned.

The robot is also given that the predicates describing
the possible relations between parts or the actions that may
be performed with these parts are to be considered more
important than the predicates describing the shape of the
parts. This information is given by the teacher in the form
of the following weights associated with the predicates:

«(RELATION) = w(ACTION) = 4

«(GRASPING) = «(APPROACHING)
= w(POSITION) = 3
«(SUBPART) = 2

w(ALIGNED) = w(INSIDE) = «(PARALLEL) = 1.

Running our clustering algorithm with these examples
we obtained the hierarchy of concepts shown in Fig. 7.

Notice that the robot discovered the concepts that are
relevant to its goal (planning assembling tasks).
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Fig. 6. (a) A robot assembly world. (b) Details of an axle.
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Fig. 7. Concepts learned from the robot world in Fig. 6.

Let us now suppose that the robot goal is to recognize
objects. In this case, the teacher will have to state that the
most important predicates are those describing the shape
of the parts and the robot may discover the concepts shown
in Fig. 8.

Let us consider again the hierarchy in Fig. 7. We want
to transform it into a hierarchy of prototypes [18]. In such
a hierarchy, each prototype is defined in terms of its
ancestors. For instance, one says that graspable object is
an object that has specific properties and that axle is a
graspable object that has specific properties. The descrip-
tion that is actually associated with a prototype consists
of its specific properties. Therefore, the description of ob-
Jject consists of the features common to all the objects from
Fig. 6. Also, the description of graspable object consists
of the features common to the axles and wheels, except
those that are already present in the description of object
because they are automatically inherited.

Our clustering algorithm has already computed a de-
scription of each concept. Therefore, to transform the hi-
erarchy in Fig. 7 into a hierarchy of prototypes one has
only to remove, from the description of each concept, the
features which are already present into the descriptions of
its ancestors. Acting this way one obtains the hierarchy
of prototypes shown in Fig. 9.

The prototype object contains the properties common
to all objects in the robot world presented. These prop-
erties express the fact that an object (be it a graspable one
or not) could be in certain relations with other objects
(there is no relation common to all objects and this is the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 6, NOVEMBER 1988

(object)
(object-with-holes)

(axle) (wheel)

AXLE1 AXLE2 WHEEL1 WHEEL2 WHEEL3 WHEEL4 CARBODY1

Fig. 8. Another set of concepts learnable from Fig. 6.

(object)
(RELATION x t) (ACTION y v)
(POSITION m) (SUBPART SOLID p S1)
(SUBPART u CYLINDER(h2 d2) S2) (SUBPART w CYLINDER(h3 d3) §3)
(MAY-BE-THE-SAME (51.53) (h2.h3) (1. (S1 52 53)) (v .(51 52 53)))

(graspable object)
(GRASPING Q1)
(APPROACHING Q2)
(x,1):=:(ATTACHED,S1)
y={GRASP,MOVE}
p=CYLINDER(h3 d3)

w:=:SOLID
(MAY-BE-THE-SAME (S1,53) (h2,h3))

(CARBODY1)
(INSIDE 52 §1)
(INSIDE 53 51)

(PARALLEL 52 53)
x:=:{BLOCKED,UNBLOCKED }
y:={BLOCK . UNBLOCK }
(axfe) =:S1
(ALIGNED S1 52 53)

v=S1
(x.t)={(ATTACHED.S1), (wheet) u=HOLE
(THRU.S2)} (INSIDE 52 53) w=HOLE
(y.v):=( (INSERT.S1), y=PUSH p:=CUBOID(30 20 12)
(INSERT.S3)} VSt h2=h3:=:20
y:=:S2 u=HOLE d2:=35
u:=SOLID (ARE-THE-SAME (S1,53) 43:=70

Fig. 9. A hierarchy of prototypes learned from examples.

reason for the presence of the variables in the descrip-
tion), that certain actions can be performed on the object,
that the object is characterized by a certain spatial posi-
tion and has cylinder subparts of the same height. Implic-
itly, different names means different entities. Therefore
the MAY-BE-THE-SAME predicate indicates which
variables can take the same value. For instance ‘‘v”’ could
take the same value as S1 or S2 or §3.

The prototype graspable object contains the properties
common only to graspable objects (has a GRASPING
point and a corresponding APPROACHING point). It also
inherits the properties of object and establishes values for
some of the variables in the inherited properties.

y :=: {GRASP, MOVE} means that the property (AC-
TION y v), which is inherited from object, has to be in-
stantiated to (ACTION GRAP v) & (ACTION MOVE
v).

(x,1) :=: (ATTACHED, S1) means that any inherited
property containing the tuple (x, t) has to be instantiated
by replacing x with ATTACHED and ¢ with S1.

Similarly, axle defines the properties common only to
axles, but not common to all graspable objects or general
objects. It also inherits the properties of its ancestors.

The significance and the advantages of the above de-
scription are those generally mentioned in connection with
the hierarchies of prototypes: knowledge is organized
around relevant conceptual entities (prototypes) in a
memory efficient manner (the inheritance mechanism al-
lows for a unique representation of a property common to
some objects as the property of a prototypc of those ob-
jects). Moreover, the generalization techniques are able
to reveal subtle features that are common to the objects.

One disadvantage of the above descriptions is that they
are somehow complicated. Therefore they need to be sim-
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plified by removing certain facts that may be proven to be
useless for the application domain.

Once learned, these prototypes may be directly referred
to by other pieces of knowledge [17]. For instance, a rule
may indicate to the robot that, for moving a graspable
object, it has to move the hand to the object’s approaching
point, open the hand, move the hand to the object, close
the hand, and move the hand. This rule may be used for
each graspable object instance.

VII. CONCLUSIONS

One of the most critical problems of inductive learning
is that of choosing among competing generalizations. In
this paper we proposed and justified a solution to this
problem which is based on the notion of conceptual dis-
tance and consists in enhancing the symbolical method of
generalization with some numerical estimations.

A distinctive feature of our approach is that learning
from examples and learning by observation are seen as
complementary learning paradigms:

¢ learning by observation uses learning from examples
to determine the examples to cluster;

¢ learning from examples uses learning by observation
to determine the objects to match.

These relationships allowed the definition of a recursive
learning method in which a complex learning from ex-
amples task is reduced to a task of clustering the objects
contained in the examples, which in turn is reduced to a
task of learning from these objects.
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